首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the herbicide 4,6-dinitro-o-cresol (DNOC), a structural analogue of the classical protonophore 2,4-dinitrophenol, on the bioenergetics and inner membrane permeability of isolated rat liver mitochondria was studied. We observed that DNOC (10-50 microM) acts as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria, promoting both an increase in succinate-supported mitochondrial respiration in the presence or absence of ADP and a decrease in transmembrane potential. The protonophoric activity of DNOC was evidenced by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium, in the presence of valinomycin. At higher concentrations (> 50 microM), DNOC also induces an inhibition of succinate-supported respiration, and a decrease in the activity of the succinate dehydrogenase can be observed. The addition of uncoupling concentrations of DNOC to Ca(2+)-loaded mitochondria treated with Ruthenium Red results in non-specific membrane permeabilization, as evidenced by mitochondrial swelling in isosmotic sucrose medium. Cyclosporin A, which inhibits mitochondrial permeability transition, prevented DNOC-induced mitochondrial swelling in the presence of Ca2+, which was accompanied by a decrease in mitochondrial membrane protein thiol content, owing to protein thiol oxidation. Catalase partially inhibits mitochondrial swelling and protein thiol oxidation, indicating the participation of mitochondrial-generated reactive oxygen species in this process. It is concluded that DNOC is a potent potent protonophore acting as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria by dissipating the proton electrochemical gradient. Treatment of Ca(2+)-loaded mitochondria with uncoupling concentrations of DNOC results in mitochondrial permeability transition, associated with membrane protein thiol oxidation by reactive oxygen species.  相似文献   

2.
Prolonged heart ischaemia causes an inhibition of oxidative phosphorylation and an increase of Ca2+ in mitochondria. We investigated whether elevated Ca2+ induces changes in the oxidative phosphorylation system relevant to ischaemic damage, and whether Ca2+ and other inducers of mitochondrial permeability transition cause the release of cytochrome c from isolated heart mitochondria. We found that 5 microM free Ca2+ induced changes in oxidative phosphorylation system similar to ischaemic damage: increase in the proton leak and inhibition of the substrate oxidation system related to the release of cytochrome c from mitochondria. The phosphorylating system was not directly affected by high Ca2+ and ischaemia. The release of cytochrome c from mitochondria was caused by Ca2+ and 0.175-0.9 mM peroxynitrite but not by NO, and was prevented by cyclosporin A. Adenylate kinase and creatine kinase were also released after incubation of mitochondria with Ca2+, however, the activity of citrate synthase in the incubation medium with high and low Ca2+ did not change. The data suggest that release of cytochrome c and other proteins of intermembrane space may be due to the opening of the mitochondrial permeability transition pore, and may be partially responsible for inhibition of mitochondrial respiration induced by ischaemia, high calcium, and oxidants.  相似文献   

3.
The tumour promoting properties of carcinogenic 2-acetylaminofluorene (AAF) in rat liver are essentially unknown. We proposed that mitochondria are a target for the cytotoxic effects of 2-nitrosofluorene (NOF), a metabolite of AAF, since NOF induces a redox-cycle at complex I and complex III of the respiratory chain, and impairs respiration and oxidative phosphorylation. We now demonstrate that NOF is a potent inducer of the mitochondrial permeability transition pore (PTP) in isolated mitochondria. In the presence of Ca2+, NOF induced rapid swelling of mitochondria in a dose-dependent manner and depolarized the mitochondrial membrane. Permeability transition as well as depolarization were abolished completely by pre-incubation with the PTP inhibitor cyclosporin A. To study whether the PTP is involved in in vivo toxicity, rats were fed a diet containing AAF (0.04%) for 2 weeks. After isolation of mitochondria, permeability transition was induced by high Ca2+ concentrations (150-400 microM) or phosphate plus Ca2+. Swelling was determined as maximal rate of absorption decrease at 540 nm (delta A/delta t). Surprisingly, delta A/delta t-values of mitochondria from AAF-fed rats were significantly lower (16.3 +/- 4.8 x 10(3)/min) than of mitochondria from control animals (32.7 +/- 4.1 x 10(3)/min; P < 0.02). In the presence of phosphate (15 mM), delta A/delta t-values of mitochondria from AAF-fed rats were even lower (10% of control). Moreover, the membrane potential which was dissipated rapidly by the PTP-inducer NOF (30 microM) at a Ca2+ concentration of 80 microM in mitochondria from control animals, remained constant in mitochondria of AAF-treated rats. We therefore propose that the regulation of the PTP is altered on chronic AAF-feeding. The increased resistance of mitochondria against permeability transition may alter the threshold for apoptosis and thus suppress apoptosis. We also discuss the role of epigenetic modifications in early stages of carcinogenesis.  相似文献   

4.
Bax is a pro-apoptotic member of the Bcl-2 protein family that resides in the outer mitochondrial membrane. It is controversial whether Bax promotes cell death directly through its putative function as a channel protein versus indirectly by inhibiting cellular regulators of the cell death proteases (caspases). We show here that addition of submicromolar amounts of recombinant Bax protein to isolated mitochondria can induce cytochrome c (Cyt c) release, whereas a peptide representing the Bax BH3 domain was inactive. When placed into purified cytosol, neither mitochondria nor Bax individually induced proteolytic processing and activation of caspases. In contrast, the combination of Bax and mitochondria triggered release of Cyt c from mitochondria and induced caspase activation in cytosols. Supernatants from Bax-treated mitochondria also induced caspase processing and activation. Recombinant Bcl-XL protein abrogated Bax-induced release of Cyt c from isolated mitochondria and prevented caspase activation. In contrast, the broad-specificity caspase inhibitor benzyloxycarbonyl-valinyl-alaninyl-aspartyl-(0-methyl)- fluoromethylketone (zVAD-fmk) and the caspase-inhibiting protein X-IAP had no effect on Bax-induced release of Cyt c from mitochondria in vitro but prevented the subsequent activation of caspases in cytosolic extracts. Unlike Ca2+, a classical inducer of mitochondrial permeability transition, Bax did not induce swelling of mitochondria in vitro. Because the organellar swelling caused by permeability transition causes outer membrane rupture, the findings, therefore, dissociate these two events, implying that Bax uses an alternative mechanism for triggering release of Cyt c from mitochondria.  相似文献   

5.
The protective effects of Mg2+ and various natural and synthetic polyamines on the permeability transition of isolated rat liver mitochondria have been compared. The permeability transition was induced by incubating the mitochondria in a sucrose medium at pH 7.4 in the presence of 100 microM Ca2+ and 1 mM phosphate and was monitored via the release of endogenous Mg2+, sucrose permeation, mitochondria swelling and the fall of transmembrane potential. By all of these parameters (only the traces of delta psi have been reported) spermine fully inhibited the transition at 25 microM concentration, spermidine and caldine at 250 microM and Mg2+ at 500 microM concentration. Both putrescine and dien exhibited only a partial protection even at 2.5 mM concentration. The protective action resulted strictly dependent on the number of the positive charges of each cation. In the case of polyamines this number is also determined by the nature of the methylene carbon chains of each compound.  相似文献   

6.
Results obtained prove that respiration stimulation of mitochondria Ca2+, Sr2+, Mn2+ is determined by transport of these cations to the indicated subcellular structures with participation of Ca2(+)-uniporter. Effect of Cd2+ on respiration of mitochondria is of two-phase character. Concentration of Cd2+ being above 100 microM the stimulation phase is accompanied by the further inhibition of mitochondria respiration. La3+ inhibits respiration of mitochondria. However La3+ and Cd2+ stimulate H+ production by mitochondria, that is not blocked by ruthenium red (10 microM). Probably, the effect of La3+ and Cd2+ on respiration of mitochondria is determined by the change of proton conductivity of mitochondrion membrane. Direct inhibiting effect of Cd2+ on the respiration chain of mitochondria has been established.  相似文献   

7.
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson's disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP(+)-induced swelling and release of cytochrome c. The MPP(+)-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP(+)-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.  相似文献   

8.
Induction of the mitochondrial permeability transition in vitro is well-characterized and widely implicated in the mechanism of oxidant-induced cell death. Despite an abundance of in vitro evidence, implication of mitochondrial dysfunction in the mechanism of chemical toxicity in vivo awaits demonstration of the induction of the mitochondrial permeability transition in tissues from intoxicated animals. Menadione (2-methyl-1,4-naphthoquinone), an agent known to induce the permeability transition in isolated liver mitochondrial in vitro, was administered as a single bolus to adult male rats, and hepatic mitochondria were isolated 24 h later. Mitochondria from menadione-treated rats exhibited an increased sensitivity to calcium-induced inhibition of state 3 respiration and loss of respiratory control, as well as a greater sensitivity to calcium-induced calcium release that was inhibited by cyclosporine A. Associated with this was the depolarization of membrane potential and swelling of mitochondria from menadione-treated animals, but not control animals. Both the calcium-dependent depolarization and swelling of mitochondria from menadione-treated rats were inhibited by adding either cyclosporine A or ruthenium red. The results are consistent with the induction of the mitochondrial permeability transition and provide the first evidence for the manifestation of an increased sensitivity to this response as a result of chemical exposure in vivo.  相似文献   

9.
We and others have recently shown that loss of the mitochondrial membrane potential (Deltapsi) precedes apoptosis and chemical-hypoxia-induced necrosis and is prevented by Bcl-2. In this report, we examine the biochemical mechanism used by Bcl-2 to prevent Deltapsi loss, as determined with mitochondria isolated from a cell line overexpressing human Bcl-2 or from livers of Bcl-2 transgenic mice. Although Bcl-2 had no effect on the respiration rate of isolated mitochondria, it prevented both Deltapsi loss and the permeability transition (PT) induced by various reagents, including Ca2+, H2O2, and tert-butyl hydroperoxide. Even under conditions that did not allow PT, Bcl-2 maintained Deltapsi, suggesting that the functional target of Bcl-2 is regulation of Deltapsi but not PT. Bcl-2 also maintained Deltapsi in the presence of the protonophore SF6847, which induces proton influx, suggesting that Bcl-2 regulates ion transport to maintain Deltapsi. Although treatment with SF6847 in the absence of Ca2+ caused massive H+ influx in control mitochondria, the presence of Bcl-2 induced H+ efflux after transient H+ influx. In this case, Bcl-2 did not enhance K+ efflux. Furthermore, Bcl-2 enhanced H+ efflux but not K+ flux after treatment of mitochondria with Ca2+ or tert-butyl hydroperoxide. These results suggest that Bcl-2 maintains Deltapsi by enhancing H+ efflux in the presence of Deltapsi-loss-inducing stimuli.  相似文献   

10.
The influence of nitric oxide on mitochondrial permeability transition (MPT) phenomenon was studied. NO was generated by photolysis of S-nitroso-N-acetylcysteine, AcCys(NO), with green light (lambda = 550 nm). Two distinct effects of nitric oxide on rat liver mitochondria were identified. First, NO accelerated an onset of swelling in Ca2(+)-loaded mitochondria in a cyclosporin-A-sensitive manner acting as an inducer of permeability transition. This was, apparently, a result of irreversible alteration of mitochondrial function accompanying the inhibition of respiratory chain in the presence of calcium. Formation of ESR-visible iron-sulfur dinitrosyl complexes (g = 2.041) could also contribute to the irreversible changes resulting in MPT induction. Second, NO changed significantly the response of mitochondria to Ca2+/phosphate-induced MPT, acting as a regulator of permeability transition. In this case the action of nitric oxide led to division of the mitochondria into two subpopulations: one which underwent the rapid permeability transition and another in which the MPT was inhibited. The effect of NO on Ca2+/Pi-induced MPT was transient and resulted from reversible inhibition of cytochrome oxidase followed by the changes in transmembrane potential and Ca2+ distribution. The characteristic time of duration of these NO modulated effects depended on nitric oxide as well as on oxygen concentrations. With increasing NO at fixed oxygen concentrations, this time levelled off to reach a maximum value which was inversely related to the oxygen concentration. It is concluded that under physiological condition the duration of reversible NO effects on mitochondrial function could be determined by oxygen concentration.  相似文献   

11.
Oxidation of added NADH by rat liver mitochondria has been studied. It is found that exogenous NADH, when oxidized by rat liver mitochondria in sucrose hypotonic medium supplemented with Mg2+ and EGTA, generates a membrane potential (delta psi) even in the absence of added cytochrome c. ADP and phosphate decrease delta psi, the effect being reversed by oligomycin. Rotenone and myxothiazol do not inhibit delta psi generated by oxidation of exogenous NADH. Added cytochrome c increases the rate of the exogenous NADH oxidation and coupled delta psi formation. In sucrose isotonic medium, or in hypotonic medium without Mg2+, exogenous NADH fails to stimulate respiration and to form a membrane potential. In the presence of Mg2+, exogenous NADH appears to be effective in delta psi generation in isotonic sucrose medium if mitochondria were treated with digitonin. In isotonic KCl without Mg2+, oxidation of exogenous NADH is coupled to the delta psi formation and MgCl2 addition before mitochondria prevents this effect. In hypotonic (but not in isotonic) sucrose medium, Mg2+ makes a portion of the cytochrome c pool reducible by exogenous NADH or ascorbate. It is assumed that (i) hypotonic treatment or digitonin causes disruption of the outer mitochondrial membrane, and, as a consequence, desorption of the membrane-bound cytochrome c in a Mg2+-dependent fashion; (ii) incubation in isotonic KCI without Mg2+ results in swelling of mitochondrial matrix, disruption of the outer membrane and cytochrome c desorption whereas Mg2+ lowers the K+ permeability of the inner membrane and, hence, prevents swelling; (iii) desorbed cytochrome c is reduced by added NADH via NADH-cytochrome b5 reductase and cytochrome b5 or by ascorbate and is oxidized by cytochrome oxidase. The role of desorbed cytochrome c in oxidation of superoxide and cytoplasmic NADH as well as possible relations of these events to apoptosis are discussed.  相似文献   

12.
Ion permeability of internal membrane and a respiration in isolated rat liver mitochondria, further related to as "sodium ones", were studied following replacement of K+ ions for Na+ ones in the mitochondrial matrix. As compared with the control ("potassium mitochondria"), state 4 respiration in the sodium mitochondria, energized by succinate, was shown to be enhanced in KCl or sucrose media. Oxygen consumption rates in the sodium mitochondria, being in state 3 or stimulated by 2,4-dinitrophenol, were lower than rates for the control mitochondria. This effect was much pronounced in the sucrose medium. The coefficients, characterizing the distribution of 137Cs between mitochondria and the medium, were lower for the sodium mitochondria than for the control in the presence of 2.5 mM succinate and 10(-8) M valinomycin. In comparison with the control, a more extensive swelling for the sodium mitochondria was found, first, in the medium containing 25 mM K-acetate and 100 mM sucrose for succinate-energized mitochondria, and second, in the medium containing 125 mM NH4NO3 without mitochondrial energization. Changes disclosed in respiration, swelling and coefficients of 137Cs distribution for the sodium mitochondria are supposed to be caused by non-uniform effects of Na+ and K+ ions on the water structure of mitochondrial matrix, ion permeability of internal membrane, and the activity in oxidative phosphorylation enzymes.  相似文献   

13.
This paper reports an investigation on the regulation of the mitochondrial cyclosporin A-sensitive permeability transition pore (MTP). Energized, coupled rat liver mitochondria incubated in sucrose medium in the presence of phosphate maintain a high proton electrochemical gradient (delta microH) and a low permeability to solutes. Addition of a small (10-20 microM) Ca2+ pulse leads to a transient membrane depolarization. After Ca2+ accumulation, a high delta microH is recovered, and mitochondria remain coupled indefinitely. Yet, addition of fully uncoupling concentrations of carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) brings about MTP opening within seconds. This finding confirms that MTP opening is the consequence rather than the cause of membrane depolarization, and allowed us to study the operation of the MTP in a synchronized population of mitochondria, since pore opening can be triggered by the addition of uncoupler under a series of experimental conditions. We find that three regulatory sites can be defined: (i) an internal Me2+ binding site: when this site is occupied by Ca2+, the pore "open" probability increases, while other Me2+ ions (Sr2+, Mn2+) have an inhibitory effect; (ii) an external Me2+ binding site: when this site is occupied by Me2+ ions, including Ca2+, the pore open probability decreases; (iii) an independent cyclosporin A binding site: when this site is occupied by cyclosporin A the pore open probability decreases. We show that at variance from the case of cyclosporin A, MTP inhibition by the phospholipase A2 inhibitors nupercaine and trifluoperazine is Ca(2+)-competitive and is presumably related to interference by these drugs with Ca2+ binding to the internal regulatory site.  相似文献   

14.
The oxygen dependence of the mitochondria permeability transition pore was under study in non-respiring rat liver mitochondria. Oxygen in the medium was depleted by saturation of the incubation medium with N2 and spontaneously by mitochondrial respiration followed by the addition of glucose/glucose oxidase. After the anaerobic state had been reached, ferricyanide has been added to support succinate-driven energization in the absence of oxygen. In the other set of the experiments KCN was added to block operation of the respiratory chain under aerobic conditions. Again, ferricyanide was added as an electron acceptor. Superoxide dismutase was added to trap superoxide anion radicals. Under either hypoxic conditions or in the presence of cyanide, calcium ions were shown to induce the permeability transition. The concentration of Ca2+ required was lower than under conditions of active respiration. In both cases, the transition was prevented by cyclosporine A.  相似文献   

15.
Mitochondrial swelling and membrane protein thiol oxidation associated with mitochondrial permeability transition induced by Ca2+ and inorganic phosphate are inhibited in a dose-dependent manner either by catalase, the thiol-specific antioxidant enzyme (TSA), a protein recently demonstrated to present thiol peroxidase activity, or ebselen, a selenium-containing heterocycle which also possesses thiol peroxidase activity. This inhibition of mitochondrial permeability transition is due to the removal of mitochondrial-generated H2O2 which can easily diffuse to the extramitochondrial space. Whereas ebselen required the presence of reduced glutathione as a reductant to grant its protective effect, TSA was fully reduced by mitochondrial components. Decrease in the oxygen concentration of the reaction medium also inhibits mitochondrial permeabilization and membrane protein thiol oxidation, in a concentration-dependent manner. The results presented in this report confirm that mitochondrial permeability transition induced by Ca2+ and inorganic phosphate is reactive oxygen species-dependent. The possible importance of TSA as an intracellular antioxidant, avoiding the onset of mitochondrial permeability transition, is discussed in the text.  相似文献   

16.
The permeability transition pore of rat liver mitochondria can be closed by chelating free Ca2+, with respect to the passage of large molecules such as mannitol and sucrose. However, an apparent H+-conducting substate remains open under these conditions, as indicated by the persistence of maximal O2 consumption rates and by the failure to recover a membrane potential. Agents which favor a closed pore, such as cyclosporin A, ADP, Mg2+, or bovine serum albumin, do not close the H+-conducting substate, but it closes spontaneously when respiration becomes limited by the availability of O2. Closure provoked by an O2 limitation requires free Mg2+ in the sub-micromolar concentration range and becomes less efficient with increasing time spent in the presence of free Ca2+. The H+-conducting substate is apparently regulated by the redox status of the electron transport chain, with a reduced form favoring closure. A physical association (or equivalence) between the pore and one of the respiratory chain complexes is supported. These characteristics suggest that the transition is irreversible in vivo, if it involves a small fraction of total mitochondria, and would lead to their elimination and/or replacement by the cell. The implications of this proposal are considered, as they relate to a possible role for the transition in cellular apoptosis and the elimination of mitochondria containing mutated DNA.  相似文献   

17.
Generally most intracellular Ca2+ is stored in the endoplasmic reticulum (ER) and mitochondria. Recently a mitochondrial Ca(2+)-induced Ca2+ release (mCICR) mechanism, unconnected with ryanodine receptors (RyR's), has been shown in tumour cells. The existence of a mitochondrial Ca2+ release mechanism in BAE cells was investigated using saponin-permeabilised BAE cells. When buffered intracellular solution were 'stepped' from 10 nM to 10 microM free Ca2+, the mitochondrial inhibitors CN (2 mM), FCCP (1 microM), and RR (20 microM) significantly reduced total CICR by approximately 25%. The ER Ca(2+)-ATPase inhibitor thapsigargin (100 nM) had no effect. Furthermore, cyclosporin A (200 nM), an inhibitor of the mitochondrial permeability transition pore (PTP), abolished total CICR. Therefore, the novel ryanodine-caffeine insensitive CICR mechanism previously reported in BAE cells involves mitochondrial Ca2 release. It is proposed that in BAE cells, mCICR occurs via the mitochondrial PTP and may be physiologically important in endothelial cell Ca2+ signalling.  相似文献   

18.
Periodate-oxidized ADP (oADP)2 and periodate-oxidized ATP (oATP) stimulate the permeability transition in energized rat liver mitochondria measured as the Ca2+-efflux induced by Ca2+ and Pi. In the presence of Mg2+ and Pi, mitochondria lose intramitochondrial adenine nucleotides at a slow rate. oATP induces a strong decrease of the matrix adenine nucleotides which is inhibited by carboxyatractyloside. Under these conditions, Mg2+ prevents the opening of the permeability transition pore. EGTA prevents the Pi-induced slow efflux of adenine nucleotides, but is without effect on the oATP-induced strong decrease of adenine nucleotides. This oATP-induced strong adenine nucleotide efflux is inhibited by ADP. oATP reduces the increase of matrix adenine nucleotides occurring when the mitochondria are incubated with Mg2+ and ATP. This effect of oATP is also prevented by carboxyatractyloside. oATP is not taken up by the mitochondria. It is suggested that oATP induces a strong efflux of matrix adenine nucleotides by the interaction with the ADP/ATP carrier from the cytosolic side. The induction of the mitochondrial permeability transition by oADP and oATP is attributed to two mechanisms-a strong decrease in the intramitochondrial adenine nucleotide content, especially that of ADP, and a stabilization of the c-conformation of the ADP/ATP carrier.  相似文献   

19.
1. Trimetazidine is an anti-ischaemic drug effective in different experimental models but its mechanism of action is not fully understood. Data indicate that mitochondria could be the main target of this drug. The aim of this work was to investigate the binding of [3H]-trimetazidine on a purified preparation of rat liver mitochondria. 2. [3H]-trimetazidine binds to two populations of mitochondrial binding sites with Kd values of 0.96 and 84 microM. The total concentration of binding sites is 113 pmol mg(-1) protein. Trimetazidine binding sites are differently distributed. The high-affinity ones are located on the outer membranes and represent only a small part (4%) of total binding sites, whereas the low-affinity ones are located on the inner membranes and are more abundant (96%) with a Bmax=108 pmol mg(-1) protein. 3. Drug displacement studies with pharmacological markers for different mitochondrial targets showed that [3H]-trimetazidine binding sites are different from previously described mitochondrial sites. 4. The possible involvement of [3H]-trimetazidine binding sites in the regulation of the mitochondrial permeability transition pore (MTP), a voltage-dependent channel sensitive to cyclosporin A, was investigated with mitochondrial swelling experiments. Trimetazidine inhibited the mitochondrial swelling induced by Ca2+ plus tert-butylhydroperoxide (t-BH). This effect was concentration-dependent with an IC50 value of 200 microM. 5. Assuming that trimetazidine effectiveness may be related to its structure as an amphiphilic cation, we compared it with other compounds exhibiting the same chemical characteristic both for their ability to inhibit MTP opening and to displace [3H]-trimetazidine bound to mitochondria. Selected compounds were drugs known to interact with various biological membranes. 6. A strong correlation between swelling inhibition potency and low-affinity [3H]-trimetazidine binding sites was observed: r=0.907 (n=24; P<0.001). 7. These data suggest that mitochondrial sites labelled with [3H]-trimetazidine may be involved in the MTP inhibiton.  相似文献   

20.
Some viruses induce changes in membrane permeability during infection. We have shown previously that the porcine strain of rotavirus, OSU, induced an increase in the permeability to Na+, K+, and Ca2+ during replication in MA104 cells. In this work, we have characterized the divalent cation entry pathway by measuring intracellular Ca2+ in fura-2-loaded MA104 and HT29 cells in suspension. The permeability to Ca2+ and other cations was evaluated by the change of the intracellular concentration following an extracellular cation pulse. Rotavirus infection induced an increase in permeability to Ca2+, Ba2+, Sr2+, Mn2+, and Co2+. The rate of cation entry decreased over time as the intracellular concentration increased during the first 20 s. This indicates that regulatory mechanisms, including channel inactivation, are triggered. La3+ did not enter the cell and blocked the entry of the divalent cations in a dose-dependent manner. Metoxyverapamil (D600), a blocker of L-type voltage-gated channels, partially inhibited the entry of Ca2+ in virus-infected MA104 and HT29 cells. The results suggest that rotavirus infection of cultured cells activates a cation channel rather than nonspecific permeation through the plasma membrane. This activation involves the synthesis of viral proteins through mechanisms yet unknown. The increase in intracellular Ca2+ induced by the activation of this channel may be related to the increase in cytoplasmic and endoplasmic reticulum Ca2+ pools required for virus maturation and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号