首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究了AZ31B镁合金热挤压工艺与模具。实验结果表明:(1)经400℃×20h的均匀化退火后的AZ31B镁合金铸锭,在挤压温度380~400℃、挤压速度1.0~2.5m/min的工艺条件下,可以挤压出复杂断面的型材,证明其具有良好的热挤压性能。(2)模具结构形式影响挤压力的大小。  相似文献   

2.
王锐 《热加工工艺》2012,41(13):95-97
在某镁业有限公司的挤压车间进行了AZ31镁合金型材宽展挤压温度、挤压速度和变形程度等工艺参数的研究,在某铝业有限公司进行了AZ31镁合金型材宽展挤压。通过对挤压温度、挤压速度和变形程度进行控制,有效地提高了出品速度和成品率,对于镁合金型材宽展挤压技术具有实践意义。  相似文献   

3.
镁合金AZ31B挤压成形工艺及模具研究   总被引:1,自引:0,他引:1  
研究了AZ31B镁合金热挤压工艺与模具.实验结果表明(1)经400℃×20 h的均匀化退火后的AZ31B镁合金铸锭,在挤压温度380~400℃、挤压速度1.0~2.5 m/min的工艺条件下,可以挤压出复杂断面的型材,证明其具有良好的热挤压性能.(2)模具结构形式影响挤压力的大小.  相似文献   

4.
为减小非对称型材挤压的弯扭畸变 ,在试验研究的基础上 ,建立了局部挤压比、挤压带系数的概念 ,挤压筒中心与挤压模孔型中心相对位置的计算式。实验证明利用本文提出的计算式进行模具设计能有效地减小挤压非对称型材的弯扭畸变  相似文献   

5.
现代化汽车结构轻量化的需求推动了质量轻、资源丰富的镁合金在汽车工业中的应用,但是镁合金受塑性变形能力不足而制约其发展。因此,研究应用正挤压耦合等通道挤压ECAP(Equal Channel Angular Pressing)工艺对提高镁合金型材塑性变形能力、细化组织和提高性能具有重要意义。试验对比了某规格AZ31镁合金型材ECAP复合挤压工艺与传统正挤压工艺。试验表明,ECAP复合挤压工艺的挤压力和模具出口处型材温度分别比正挤压工艺的高约30%和25℃~28℃,精细化控制要求更为苛刻,ECAP复合挤压工艺得到的型材的晶粒细化更为明显,其平均晶粒尺寸约为5μm。  相似文献   

6.
采用数值模拟和实验方法研究薄壁、多筋AZ31镁合金挤压型材的温热张力绕弯成形工艺,分析工艺参数对AZ31弯曲型材回弹特征的影响。结果表明:当成形温度由100℃升高至200℃时,AZ31镁合金型材弯曲件回弹角的实验值和模拟值均减小,实验回弹角由11.6°降低至10.7°,回弹率由11.26%降低至10.39%,回弹角与成形温度的关系近似为线性关系。当弯曲角由100°增加至110°时,AZ31镁合金型材弯曲件回弹角的实验值和模拟值都增加,实验回弹角由10.8°增加至11.5°,回弹率由10.48%增加至11.16%。当预拉伸量由0.2%增加至1.1%时,AZ31镁合金型材弯曲件回弹角的实验值和模拟值都减小,实验回弹角由12.5°降低至9.8°,回弹率由12.14%降低至9.51%。  相似文献   

7.
8.
从修模工具和修模方法两方面阐述了修模中常需注意的一些问题。  相似文献   

9.
基于Deform-3D有限元平台,建立了某规格AZ31镁合金型材ECAP复合挤压工艺(等通道挤压ECAP和正挤压耦合工艺)过程的宏微观耦合有限元模型。研究发现:型材突破模具出口后挤压力稳定在16000 kN左右;突破工作带的型材温度在449~473℃范围内波动;型材平均晶粒尺寸可细化到约6~6.5μm。试验结果和模拟结果吻合良好,验证了所建立有限元模型在宏观和微观规律预测时的稳定性和可靠性。该有限元模型和研究结果可为ECAP复合挤压工艺参数的合理取值、组织性能的有效控制提供理论依据。  相似文献   

10.
AZ31镁合金挤压模拟与实验研究   总被引:2,自引:2,他引:2  
采用有限元模拟和实验验证相结合的方法对AZ31镁合金十字型材挤压过程进行研究。研究发现,有限元模拟能够较真实地反映镁合金挤压变形过程中的热力学参数分布和演变情况。同时发现,通过调整挤压速度能使镁合金挤压出口温度维持在较小范围内波动,从而解决镁合金变形温度范围窄的问题,保证制品沿长度方向的组织性能和尺寸精度稳定。  相似文献   

11.
基于伺服压力机的AZ31镁合金反挤压成形   总被引:1,自引:0,他引:1  
为探讨挤压速度模式对AZ31镁合金杯形件反挤压成形的影响,对伺服压力机反挤压成形进行有限元分析与实验,并与普通曲柄压力机和液压机反挤压成形进行比较。有限元分析结果表明,反挤压终了阶段,伺服挤压和液压挤压最大损伤值分别为3.41和3.30,远低于普通挤压的最大损伤值6.08;挤压过程中杯形件最大温差伺服挤压为45℃,而普通挤压和液压挤压分别为127℃和70℃。实验结果表明,在1100kN伺服压力机上,采用伺服挤压模式,可成功获得壁厚为3mm的AZ31镁合金反挤压杯形件,而采用普通挤压模式,在杯形件边缘则出现破裂。实验与有限元分析结果基本吻合。  相似文献   

12.
对AZ31镁合金板材的等温弯曲变形过程进行了数值模拟,分析了其变形特点以及金属流动规律,确定了合理的变形参数,即弯曲凸模半径为8 mm,凸模间距为38 mm。同时,研制了AZ31镁合金板材的等温弯曲实验装置,并对AZ31镁合金板材在不同变形温度下进行了不同道次的等温弯曲实验研究,分析了镁合金板材微观组织的变化规律。AZ31镁合金板材经过等温弯曲变形后,其室温伸长率达到17.1%,而原始AZ31镁合金板材的室温伸长率为12.4%,提高了42%。  相似文献   

13.
1 INTRODUCTIONMagnesiumalloysarethelightestmetallicstruc turalmaterialsandhencetheyprovidegreatpotentialintheweightsavingofautomotiveandaerospacecomponents ,materialhandlingequipment ,portabletoolsandevensportinggoods[1,2 ] .Duetotheirhexago nalclose packed (HCP)crystalstructure ,magnesiumalloysperform poorformabilityandlimitedductilityatroomtemperature ,thustheirproductsaremainlyfabricatedbycasting ,inparticular ,die casting ,andtheapplicationsofwroughtmagnesiumalloysarelim ited .Nowit…  相似文献   

14.
AZ31镁合金的热挤压变形和力学性能分析   总被引:1,自引:0,他引:1  
为了掌握高精度镁合金管材的生产工艺,通过对铸锭的均匀化处理,借助500 t挤压机、拉伸试验机、金相显微镜和透射电镜(TEM)对AZ31镁合金管材的等温挤压过程进行了研究,试制了AZ31镁合金挤压薄壁管材,获得了尺寸精度高、粗糙度小和壁厚差小的管材;分析了不同挤压条件下的AZ31镁合金管材的尺寸精度、组织、力学性能.研究结果表明:在挤压温度为623士20K挤出管材经523K×3h退火时其性能较好,抗拉强度、屈服强度和延伸率分别为270 MPa,175 MPa和23.1%.  相似文献   

15.
综述了AZ31镁合金塑性变形理论研究的最新成果;介绍了近年来AZ31镁合金轧制、挤压和锻造等塑性加工技术的研究进展;展望了AZ31镁合金的发展方向,指出应该加强AZ31镁合金基础理论、成形技术和镁基复合材料的研究。  相似文献   

16.
AZ31镁合金的等温挤压及其力学性能分析   总被引:1,自引:0,他引:1  
等温挤压是镁合金材料的重要加工方法,它能改善制品的质量,提高制品的力学性能。研究了等温挤压AZ31镁合金材料的力学性能。结果表明:等温挤压显著地提高AZ31镁合金的强度、硬度,但当变形程度达到82%以上时,其强度不再增加,反而下降。材料的硬度有方向性。  相似文献   

17.
AZ31镁合金铸轧和常规轧制板的变形组织及形变特征   总被引:1,自引:1,他引:0  
在变形温度为150~400 ℃、应变速率为0.3~0.000 3 s~(-1)条件下,在Gleeble1500热模拟机上采用等温拉伸试验对AZ31镁合金铸轧和常规轧制板的高温塑性及组织演变进行研究.结果表明:两种AZ31镁合金板的峰值应力和峰值应变均随着变形温度的降低和应变速率的增加而逐渐增大.铸轧板的应变硬化指数和应变速率敏感系数均大于常规轧制板的.在高温低应变速率变形条件下,铸轧板的晶界滑移引起的空洞尺寸、体积分数和密度均大于常规轧制板的.低应变速率下拉伸变形后的动态再结晶晶粒尺寸随温度的升高逐渐增加;不同变形条件下铸轧板的晶粒尺寸均小于常规轧制板的;再结晶晶粒尺寸和Z参数呈幂律关系.  相似文献   

18.
基于Deform-3D与AZ31镁合金材料模型对1号镁合金电池筒的反挤压成形过程进行数值模拟,完成模具设计及各工艺参数下反挤压成形过程的对比优化。结果表明:在相同挤压速度下,随挤压温度升高,等效应力峰值不断降低,等效应变峰值不断升高,温度场向高温区推进,并在280℃时,损伤值降至最低,说明在该温度下AZ31镁合金反挤压过程的破损率最小;另外,在280℃下,随着挤压速度的提高,等效应力场峰值不断减小,等效应变场峰值增大,温度场峰值向高温区推进,并在12 mm·s-1的挤压速度下达到损伤极值最小值。根据优化工艺进行反挤压成形试验验证,生产出了合格的产,品且筒壁组织均匀细化。  相似文献   

19.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

20.
AZ31镁合金管材挤压过程的数值模拟   总被引:1,自引:2,他引:1  
采用Gleeble1500热模拟机对于不同温度和变形速率下的AZ31镁合金的变形性能进行了研究。通过实验得到真实应力的关系式及真实应变关系式,进而得到真实应力-应变曲线。以此为基础,采用DEFORM-3D软件,对不同壁厚管材的成形的过程进行模拟,发现在挤压时,管材内壁的金属比外壁的金属流动快,挤压筒与圆锥面过渡处的等效应变值最大等现象,分析了产生的原因,并通过工艺试验验证了模拟分析的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号