首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
3.
SOX genes share a high sequence identity with the HMG box present in the testis determining gene SRY. We have identified a HMG box-like sequence motif on six contiguous cosmids, which cross-hybridize to a SOX9 cDNA probe. A data base search revealed a high similarity of the deduced amino acid sequence to the human SOX12 and the murine Sox16 HMG domains. The cosmids were assigned to chromosome 17p13 by FISH analysis.  相似文献   

4.
5.
6.
7.
Twenty-four hamster-sheep hybrid cell lines representing eleven ovine synteny groups were used to make syntenic assignments for seven loci ALDOB (aldolase B, fructose biophosphate); AMH (anti-Müllerian hormone); CYP19 [cytochrome P450 aromatase, subfamily XIX (aromatization of androgens)]; WT (Wilms' tumour gene); SOX2 (SRY-related HMG-box gene 2); FSHB (follicle-stimulating hormone, beta polypeptide); and SRY (sex region of Y chromosome). These loci were assigned to synteny groups U11(chr2) (ALDOB); U19 (AMH); U3(chr7) (CYP19); and to chromosome 15 (WT) and 1 (SOX2). SRY defines the hybrids containing the Y chromosome.  相似文献   

8.
Rapid sequence evolution of the mammalian sex-determining gene SRY   总被引:6,自引:0,他引:6  
In mammals, induction of male sex determination requires the Y-chromosome gene SRY. SRY encodes a protein with a central 'high mobility group' domain (HMG box) of about 78 amino acids. HMG boxes are found in a wide variety of proteins that bind to DNA with high affinity but differing degrees of sequence specificity. The human SRY protein binds to linear DNA with sequence specificity and to cruciform DNA structures without sequence specificity. The DNA-binding activity of the SRY protein resides in the HMG box and mutations in this region are associated with sex reversal in XY females. No function has been ascribed to the portions of the SRY protein outside the HMG box. SRY belongs to a family of genes that are related by sequence homology within the DNA-binding domain: the genes most similar to SRY (> 60%) have been named SOX genes (SRY box genes). None of the known SOX genes is homologous to SRY outside the HMG-box region. Although SRY is an important developmental regulator, its sequence is poorly conserved between species apart from the HMG-box domain. Here we investigate the coding sequence of SRY in primates and find that evolution has been rapid in the regions flanking the conserved domain. The high degree of sequence divergence and the frequency of non-synonymous mutations suggest either that the majority of the coding sequence has no functional significance or that directional selection has occurred.  相似文献   

9.
10.
Mammalian sex determination is controlled by the Y-linked gene SRY. Studies of sex-reversed patients and experimental data obtained with mice have identified other genes, such as DAX1, SOX9, SF1, and WT1, which take part in the process, and have suggested how these genes interact to determine the sex of a mammalian embryo. A recent paper in Nature by Swain et al. provides experimental data that basically confirm the previously proposed hypothesis that SRY acts by inhibiting the action of DSS/DAX1, which is a repressor of genes of the male pathway.  相似文献   

11.
SOX proteins bind similar DNA motifs through their high-mobility-group (HMG) domains, but their action is highly specific with respect to target genes and cell type. We investigated the mechanism of target selection by comparing SOX1/2/3, which activate delta-crystallin minimal enhancer DC5, with SOX9, which activates Col2a1 minimal enhancer COL2C2. These enhancers depend on both the SOX binding site and the binding site of a putative partner factor. The DC5 site was equally bound and bent by the HMG domains of SOX1/2 and SOX9. The activation domains of these SOX proteins mapped at the distal portions of the C-terminal domains were not cell specific and were independent of the partner factor. Chimeric proteins produced between SOX1 and SOX9 showed that to activate the DC5 enhancer, the C-terminal domain must be that of SOX1, although the HMG domains were replaceable. The SOX2-VP16 fusion protein, in which the activation domain of SOX2 was replaced by that of VP16, activated the DC5 enhancer still in a partner factor-dependent manner. The results argue that the proximal portion of the C-terminal domain of SOX1/2 specifically interacts with the partner factor, and this interaction determines the specificity of the SOX1/2 action. Essentially the same results were obtained in the converse experiments in which COL2C2 activation by SOX9 was analyzed, except that specificity of SOX9-partner factor interaction also involved the SOX9 HMG domain. The highly selective SOX-partner factor interactions presumably stabilize the DNA binding of the SOX proteins and provide the mechanism for regulatory target selection.  相似文献   

12.
13.
14.
15.
The human testis determining factor (SRY) has been cloned from the Y chromosome. This gene is a dominant inducer of male differentiation. Mutations in the SRY gene result in an XY individual developing as a sex reversed phenotypic female. Sex reversal in humans can also be caused by mutations located in autosomal or X-linked loci. One such sex-reversing locus (SRAI) is associated with the developmental disorder campomelic dysplasia (CD). Both these syndromes were mapped to human chromosome 17q by the identification of balanced reciprocal translocations in five unrelated patients. The translocation breakpoint of one such XY-female CD patient was mapped and the region surrounding it cloned. The closest distal marker used to map the translocation breakpoint was the SOX9 gene. Because of the close proximity of this gene to the breakpoint, it was subjected to mutation analysis in patients without overt chromosome rearrangements. Analysis of DNA from these patients and their parents identified de novo mutations in the SOX9 gene in patients with both autosomal sex reversal and CD. This showed that mutations in the SOX9 gene are responsible for both syndromes.  相似文献   

16.
17.
In mammals, sex is determined by the Y chromosome, which encodes a testis-determining factor (TDF). This factor causes the undifferentiated embryonic gonads to develop as testes rather than ovaries. The testes subsequently produce the male sex hormones that are responsible for all male sexual characteristics. In 1990, the sex-determining gene, TDF, was identified and termed SRY in humans (Sry in mice). It encodes a protein containing a high mobility group (HMG) motif, which confers the ability to bind and to bend DNA. Genetic evidence supporting SRY as TDF came from the observation of a male phenotype in XX mice transgenic for a small genomic fragment containing Sry, and from the study of XY sex-reversed individuals who harbor de novo mutations in the SRY coding sequence. Other non-Y-linked genes involved in sex determination were subsequently found by genetic analysis of XY sex-reversed patients not explained by mutations in SRY. These genes are WT1, SF1, DAX1, and SOX9. A regulatory cascade hypothesis for mammalian sex determination, proposing that SRY represses a negative regulator of male development, was recently supported by observation of mice that expressed a DAX1 transgene and developed as XY sex-reversed females. The role of some sex-determining genes, such as DAX1 and SF1, in the development of the entire reproductive axis, a functionally integrated endocrine axis, leads to a new concept. Normal sexual development may result from the functional and developmental integration of a number of different genes that play roles in sex determination, sexual differentiation, and sexual behavior.  相似文献   

18.
The genetic mechanism controlling sexual differentiation had remained unknown for a long time. Karyotype analysis of sex-inverted patients or individuals with ambiguous sexual differentiation has enabled the localization and identification of genes involved. It is currently known that the SRY gene is responsible for the initiation of a cascade reaction leading to male differentiation of the primitive gonad. SRY is a +/- 820 base pairs gene located on the small arm of the Y chromosome, more precisely within the 1A1 alpha sub-segment. Although a few other genes are known to be involved in the downstream regulation of SRY, their precise mode of action is yet unknown.  相似文献   

19.
Campomelic dysplasia (CD) is a rare, neonatal human chondrodysplasia characterized by bowing of the long bones and often associated with male-to-female sex-reversal. Patients present with either heterozygous mutations in the SOX9 gene or chromosome rearrangements mapping at least 50 kb upstream of SOX9. Whereas mutations in SOX9 ORF cause haploinsufficiency, the effects of translocations 5' to SOX9 are unclear. To test whether these rearrangements also cause haploinsufficiency by altering spatial and temporal expression of SOX9, we generated mice transgenic for human SOX9-lacZ yeast artificial chromosomes containing variable amounts of DNA sequences upstream of SOX9. We show that elements necessary for SOX9 expression during skeletal development are highly conserved between mouse and human and reveal that a rearrangement upstream of SOX9, similar to those observed in CD patients, leads to a substantial reduction of SOX9 expression, particularly in chondrogenic tissues. These data demonstrate that important regulatory elements are scattered over a large region upstream of SOX9 and explain how particular aspects of the CD phenotype are caused by chromosomal rearrangements 5' to SOX9.  相似文献   

20.
The identification of mutations in the SRY-related SOX9 gene in patients with campomelic dysplasia, a severe skeletal malformation syndrome, and the abundant expression of Sox9 in mouse chondroprogenitor cells and fully differentiated chondrocytes during embryonic development have suggested the hypothesis that SOX9 might play a role in chondrogenesis. Our previous experiments with the gene (Col2a1) for collagen II, an early and abundant marker of chondrocyte differentiation, identified a minimal DNA element in intron 1 which directs chondrocyte-specific expression in transgenic mice. This element is also a strong chondrocyte-specific enhancer in transient transfection experiments. We show here that Col2a1 expression is closely correlated with high levels of SOX9 RNA and protein in chondrocytes. Our experiments indicate that the minimal Col2a1 enhancer is a direct target for Sox9. Indeed, SOX9 binds to a sequence of the minimal Col2a1 enhancer that is essential for activity in chondrocytes, and SOX9 acts as a potent activator of this enhancer in cotransfection experiments in nonchondrocytic cells. Mutations in the enhancer that prevent binding of SOX9 abolish enhancer activity in chondrocytes and suppress enhancer activation by SOX9 in nonchondrocytic cells. Other SOX family members are ineffective. Expression of a truncated SOX9 protein lacking the transactivation domain but retaining DNA-binding activity interferes with enhancer activation by full-length SOX9 in fibroblasts and inhibits enhancer activity in chondrocytes. Our results strongly suggest a model whereby SOX9 is involved in the control of the cell-specific activation of COL2A1 in chondrocytes, an essential component of the differentiation program of these cells. We speculate that in campomelic dysplasia a decrease in SOX9 activity would inhibit production of collagen II, and eventually other cartilage matrix proteins, leading to major skeletal anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号