首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95–15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.  相似文献   

2.
Eleven novel imide-tetrazoles were synthesized. In the initial stage of research, in silico structure-based pharmacological prediction was conducted. All compounds were screened for antimicrobial activity using standard and clinical strains. Within the studied group, compounds 1–3 were recognized as leading structures with the most promising results in antimicrobial studies. Minimal inhibitory concentration values for compounds 1, 2, 3 were within the range of 0.8–3.2 μg/mL for standard and clinical Gram-positive and Gram-negative bacterial strains, showing in some cases higher activity than the reference Ciprofloxacin. Additionally, all three inhibited the growth of all clinical Staphylococci panels: Staphylococcus aureus (T5592; T5591) and Staphylococcus epidermidis (5253; 4243) with MIC values of 0.8 μg/mL. Selected compounds were examined in topoisomerase IV decatenation assay and DNA gyrase supercoiling assay, followed by suitable molecular docking studies to explore the possible binding modes. In summary, the presented transition from substrate imide-thioureas to imide-tetrazole derivatives resulted in significant increase of antimicrobial properties. The compounds 1–3 proposed here provide a promising basis for further exploration towards novel antimicrobial drug candidates.  相似文献   

3.
PEGylation of antimicrobial peptides as a shielding tool that increases stability toward proteolytic degradation typically leads to concomitant loss of activity, whereas incorporation of ultrashort PEG-like amino acids (sPEGs) remains essentially unexplored. Here, modification of a peptide/β-peptoid hybrid with sPEGs was examined with respect to influence on hydrophobicity, antibacterial activity and effect on viability of mammalian cells for a set of 18 oligomers. Intriguingly, the degree of sPEG modification did not significantly affect hydrophobicity as measured by retention in reverse-phase HPLC. Antibacterial activity against both wild-type and drug-resistant strains of Escherichia coli and Acinetobacter baumannii (both Gram-negative pathogens) was retained or slightly improved (MICs in the range 2–16 µg/mL equal to 0.7–5.2 µM). All compounds in the series exhibited less than 10% hemolysis at 400 µg/mL. While the number of sPEG moieties appeared not to be clearly correlated with hemolytic activity, a trend toward slightly increased hemolytic activity was observed for analogues displaying the longest sPEGs. In contrast, within a subseries the viability of HepG2 liver cells was least affected by analogues displaying the longer sPEGs (with IC50 values of ~1280 µg/mL) as compared to most other analogues and the parent peptidomimetic (IC50 values in the range 330–800 µg/mL).  相似文献   

4.
5.
Infections with enterococci are challenging to treat due to intrinsic resistance to several antibiotics. Especially vancomycin-resistant Enterococcus faecium and Enterococcus faecalis are of considerable concern with a limited number of efficacious therapeutics available. From an initial screening of 20 peptidomimetics, 11 stable peptide/β-peptoid hybrids were found to have antibacterial activity against eight E. faecium and E. faecalis isolates. Microbiological characterization comprised determination of minimal inhibitory concentrations (MICs), probing of synergy with antibiotics in a checkerboard assay, time–kill studies, as well as assessment of membrane integrity. E. faecium isolates proved more susceptible than E. faecalis isolates, and no differences in susceptibility between the vancomycin-resistant (VRE) and -susceptible E. faecium isolates were observed. A test of three peptidomimetics (Ac-[hArg-βNsce]6-NH2, Ac-[hArg-βNsce-Lys-βNspe]3-NH2 and Oct-[Lys-βNspe]6-NH2) in combination with conventional antibiotics (vancomycin, gentamicin, ciprofloxacin, linezolid, rifampicin or azithromycin) revealed no synergy. The same three potent analogues were found to have a bactericidal effect with a membrane-disruptive mode of action. Peptidomimetics Ac-[hArg-βNsce-Lys-βNspe]3-NH2 and Oct-[Lys-βNspe]6-NH2 with low MIC values (in the ranges 2–8 µg/mL and 4–16 µg/mL against E. faecium and E. faecalis, respectively) and displaying weak cytotoxic properties (i.e., <10% hemolysis at a ~100-fold higher concentration than their MICs; IC50 values of 73 and 41 µg/mL, respectively, against HepG2 cells) were identified as promising starting points for further optimization studies.  相似文献   

6.
A new series of 2-amino-benzo[de]isoquinoline-1,3-diones was synthesized and fully characterized in our previous paper. Here, their cytotoxic effects have been evaluated in vitro in relation to colon HCT-116, hepatocellular Hep-G2 and breast MCF-7 cancer cell lines, using a crystal violet viability assay. The IC50-values of the target compounds are reported in µg/mL, using doxorubicin as a reference drug. The findings revealed that compounds 14, 15, 16, 21 and 22 had significant cytotoxic effects against HCT-116, MCF-7 and Hep-G2 cell lines. Their IC50 values ranged between 1.3 and 8.3 μg/mL in relation to doxorubicin (IC50 ≈ 0.45–0.89 μg/mL). Therefore, these compounds could be used as templates for furthering the development and design of more potent antitumor agents through structural modification.  相似文献   

7.
High-resolution mass spectrometry equipped with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources was used to enhance the characterization of phytochemicals of ethanol extracts of Manilkara zapota L. leaves (ZLE). Sugar compounds, dicarboxylic acids, compounds of phenolic acids and flavonoids groups, and other phytochemicals were detected from the leaves. Antioxidant activity and inhibition potentiality of ZLE against α-glucosidase enzyme, and elastase enzyme activities were evaluated in in vitro analysis. ZLE significantly inhibited activities of α-glucosidase enzyme at a lower concentration (IC50 2.51 ± 0.15 µg/mL). Glucose uptake in C2C12 cells was significantly enhanced by 42.13 ± 0.15% following the treatment with ZLE at 30 µg/mL. It also exhibited potential antioxidant activities and elastase enzyme inhibition activity (IC50 27.51 ± 1.70 µg/mL). Atmospheric pressure chemical ionization mass spectrometry (APCI–MS) detected more m/z peaks than electrospray ionization mass spectrometry (ESI–MS), and both ionization techniques illustrated the biological activities of the detected compounds more thoroughly compared to single-mode analysis. Our findings suggest that APCI along with ESI is a potential ionization technique for metabolite profiling, and ZLE has the potential in managing diabetes by inhibiting α-glucosidase activity and enhancing glucose uptake.  相似文献   

8.
Fungal infections remain a high-incidence worldwide health problem that is aggravated by limited therapeutic options and the emergence of drug-resistant strains. Cinnamic and benzoic acid amides have previously shown bioactivity against different species belonging to the Candida genus. Here, 20 cinnamic and benzoic acid amides were synthesized and tested for inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019. Five compounds inhibited the Candida strains tested, with compound 16 (MIC = 7.8 µg/mL) producing stronger antifungal activity than fluconazole (MIC = 16 µg/mL) against C. krusei ATCC 14243. It was also tested against eight Candida strains, including five clinical strains resistant to fluconazole, and showed an inhibitory effect against all strains tested (MIC = 85.3–341.3 µg/mL). The MIC value against C. krusei ATCC 6258 was 85.3 mcg/mL, while against C. krusei ATCC 14243, it was 10.9 times smaller. This strain had greater sensitivity to the antifungal action of compound 16. The inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019 was also achieved by compounds 2, 9, 12, 14 and 15. Computational experiments combining target fishing, molecular docking and molecular dynamics simulations were performed to study the potential mechanism of action of compound 16 against C. krusei. From these, a multi-target mechanism of action is proposed for this compound that involves proteins related to critical cellular processes such as the redox balance, kinases-mediated signaling, protein folding and cell wall synthesis. The modeling results might guide future experiments focusing on the wet-lab investigation of the mechanism of action of this series of compounds, as well as on the optimization of their inhibitory potency.  相似文献   

9.
One of the greatest threats to human and animal health is posed by infections caused by drug-resistant bacterial strains. Therefore, newly synthesised substances are tested for their antimicrobial activity. Carbazole derivatives seem to be promising antibacterial agents. This study aimed at investigating the toxicity and activity of newly synthesised, functionalised carbazole derivative 2 (4-(4-(benzylamino)butoxy)-9H-carbazole) against various microorganisms. Its antimicrobial potential against Gram-positive and Gram-negative bacteria, yeast, and filamentous fungi was examined according to CLSI (Clinical and Laboratory Standards Institute) standards. The tested compound was found to efficiently inhibit the growth of Gram-positive strains. The addition of carbazole derivative 2 at the concentration of 30 µg/mL caused inhibition of bacterial growth by over 95%. Moreover, about 50 and 45% limitation of Pseudomonas aeruginosa and Aspergillus flavus growth was observed in the samples incubated with the addition of 20 and 60 µg/mL of the compound, respectively. Its addition to the microbial cultures caused an increase in the permeability of the cellular membrane. Slight haemolysis of red blood cells was observed after 24-h treatment with carbazole derivative 2. On the other hand, human fibroblasts were found to be more sensitive to its effects. The activity of the tested compound indicates a possibility of its further modification in order to obtain effective drugs, especially against drug-resistant staphylococci.  相似文献   

10.
In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.  相似文献   

11.
The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species. Linezolid was the most effective drug in inhibiting staphylococci in the biofilm, without an increase in the MIC, when compared to planktonic cells. None of the isolates were resistant to this drug.  相似文献   

12.
New and known arylidene-hydrazinyl-thiazole derivatives have been synthesized by a convenient Hantzsch condensation. All compounds were evaluated for their in vitro cytotoxicity on two carcinoma cell lines, MDA-MB231 and HeLa. Significant antiproliferative activity for 2-(2-benzyliden-hydrazinyl)-4-methylthiazole on both MDA-MB-231 (IC50: 3.92 µg/mL) and HeLa (IC50: 11.4 µg/mL) cell lines, and for 2-[2-(4-methoxybenzylidene) hydrazinyl]-4-phenylthiazole on HeLa (IC50: 11.1 µg/mL) cell line is reported. Electrophoresis experiments showed no plasmid DNA (pTZ57R) cleavage in the presence of the investigated thiazoles.  相似文献   

13.
A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o) and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococcal (MICs/MBCs 0.15–5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34–44.5 µM) activity. The growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29 to 2.34 µM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36 to 51.7 µM). The performed docking study demonstrated the ability of the compounds to bind to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most interesting purely antibacterial compounds within the prepared molecules.  相似文献   

14.
Shrimp is one of the most popular seafood items worldwide, and has been reported as a source of chemopreventive compounds. In this study, shrimp lipids were separated by solvent partition and further fractionated by semi-preparative RP-HPLC and finally by open column chromatography in order to obtain isolated antiproliferative compounds. Antiproliferative activity was assessed by inhibition of M12.C3.F6 murine cell growth using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. The methanolic fraction showed the highest antiproliferative activity; this fraction was separated into 15 different sub-fractions (M1–M15). Fractions M8, M9, M10, M12, and M13 were antiproliferative at 100 µg/mL and they were further tested at lower concentrations. Fractions M12 and M13 exerted the highest growth inhibition with an IC50 of 19.5 ± 8.6 and 34.9 ± 7.3 µg/mL, respectively. Fraction M12 was further fractionated in three sub-fractions M12a, M12b, and M12c. Fraction M12a was identified as di-ethyl-hexyl-phthalate, fraction M12b as a triglyceride substituted by at least two fatty acids (predominantly oleic acid accompanied with eicosapentaenoic acid) and fraction M12c as another triglyceride substituted with eicosapentaenoic acid and saturated fatty acids. Bioactive triglyceride contained in M12c exerted the highest antiproliferative activity with an IC50 of 11.33 ± 5.6 µg/mL. Biological activity in shrimp had been previously attributed to astaxanthin; this study demonstrated that polyunsaturated fatty acids are the main compounds responsible for antiproliferative activity.  相似文献   

15.
Quorum sensing is a communication system among bacteria to sense the proper time to express their virulence factors. Quorum sensing inhibition is a therapeutic strategy to block bacterial mechanisms of virulence. The aim of this study was to synthesize and evaluate new bioisosteres of N-acyl homoserine lactones as Quorum sensing inhibitors in Chromobacterium violaceum CV026 by quantifying the specific production of violacein. Five series of compounds with different heterocyclic scaffolds were synthesized in good yields: thiazoles, 16a–c, thiazolines 17a–c, benzimidazoles 18a–c, pyridines 19a–c and imidazolines 32a–c. All 15 compounds showed activity as Quorum sensing inhibitors except 16a. Compounds 16b, 17a–c, 18a, 18c, 19c and 32b exhibited activity at concentrations of 10 µM and 100 µM, highlighting the activity of benzimidazole 18a (IC50 = 36.67 µM) and 32b (IC50 = 85.03 µM). Pyridine 19c displayed the best quorum sensing inhibition activity (IC50 = 9.66 µM). Molecular docking simulations were conducted for all test compounds on the Chromobacterium violaceum CviR protein to gain insight into the process of quorum sensing inhibition. The in-silico data reveal that all 15 the compounds have higher affinity for the protein than the native AHL ligand (1). A strong correlation was found between the theoretical and experimental results.  相似文献   

16.
Bacterial biofilm formation is a major cause of drug resistance and bacterial persistence; thus, controlling pathogenic biofilms is an important component of strategies targeting infectious bacterial diseases. Cinnamaldehyde (CNMA) has broad-spectrum antimicrobial and antibiofilm activities. In this study, we investigated the antibiofilm effects of ten CNMA derivatives and trans-CNMA against Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus. Among the CNMA analogs tested, 4-nitrocinnamaldehyde (4-nitroCNMA) showed antibacterial and antibiofilm activities against UPEC and S. aureus with minimum inhibitory concentrations (MICs) for cell growth of 100 µg/mL, which were much more active than those of trans-CNMA. 4-NitroCNMA inhibited UPEC swimming motility, and both trans-CNMA and 4-nitroCNMA reduced extracellular polymeric substance production by UPEC. Furthermore, 4-nitroCNMA inhibited the formation of mixed UPEC/S. aureus biofilms. Collectively, our observations indicate that trans-CNMA and 4-nitroCNMA potently inhibit biofilm formation by UPEC and S. aureus. We suggest efforts be made to determine the therapeutic scope of CNMA analogs, as our results suggest CNMA derivatives have potential therapeutic use for biofilm-associated diseases.  相似文献   

17.
A series of novel oxyalkylchalcones substituted with alkyl groups were designed and synthesized, and the antioomycete activity of the series was evaluated in vitro against Saprolegnia strains. All tested O-alkylchalcones were synthesized by means of nucleophilic substitution from the natural compound 2′,4′-dihydroxychalcone (1) and the respective alkyl bromide. The natural chalcone (1) and 10 synthetic oxyalkylchalcones (2–11) were tested against Saprolegnia parasitica and Saprolegnia australis. Among synthetic analogs, 2-hydroxy,4-farnesyloxychalcone (11) showed the most potent activity against Saprolegnia sp., with MIC and MOC values of 125 µg/mL (similar to bronopol at 150 µg/mL) and 175 µg/mL, respectively; however, 2′,4′-dihydroxychalcone (1) was the strongest and most active molecule, with MIC and MOC values of 6.25 µg/mL and 12.5 µg/mL.  相似文献   

18.
Three new coumarin derivatives, 8-formylalloxanthoxyletin (1), avicennone (2), and (Z)-avicennone (3), have been isolated from the stem bark of Zanthoxylum avicennae (Z. avicennae), together with 15 known compounds (4–18). The structures of these new compounds were determined through spectroscopic and MS analyses. Compounds 1, 4, 9, 12, and 15 exhibited inhibition (half maximal inhibitory concentration (IC50) values ≤7.65 µg/mL) of superoxide anion generation by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 2, 4, 8 and 9 inhibited fMLP/CB-induced elastase release with IC50 values ≤8.17 µg/mL. This investigation reveals bioactive isolates (especially 1, 2, 4, 8, 9, 12 and 15) could be further developed as potential candidates for the treatment or prevention of various inflammatory diseases.  相似文献   

19.
Low-molecular-weight organic ammonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Unfortunately, short-term functionality and high toxicity limit their clinical application. On the contrary, the equivalent macromolecular ammonium salts, derived from the polymerization of monomeric ammonium salts, have demonstrated improved antibacterial potency, a lower tendency to develop resistance, higher stability, long-term activity, and reduced toxicity. A water-soluble non-quaternary copolymeric ammonium salt (P7) was herein synthetized by copolymerizing 2-methoxy-6-(4-vinylbenzyloxy)-benzylammonium hydrochloride monomer with N, N-di-methyl-acrylamide. The antibacterial activity of P7 was assessed against several multidrug-resistant (MDR) clinical isolates of both Gram-positive and Gram-negative species. Except for colistin-resistant Pseudomonas aeruginosa, most isolates were susceptible to P7, also including some Gram-negative bacteria with a modified charge in the external membrane. P7 showed remarkable antibacterial activity against isolates of Enterococcus, Staphylococcus, Acinetobacter, and Pseudomonas, and on different strains of Escherichia coli and Stenotrophomonas maltophylia, regardless of their antibiotic resistance. The lowest minimal inhibitory concentrations (MICs) observed were 0.6–1.2 µM and the minimal bactericidal concentrations (MBC) were frequently overlapping with the MICs. In 24-h time–kill and turbidimetric studies, P7 displayed a rapid non-lytic bactericidal activity. P7 could therefore represent a novel and potent tool capable of counteracting infections sustained by several bacteria that are resistant to the presently available antibiotics.  相似文献   

20.
Using two different types of impedance biochips (PS5 and BS5) with ring top electrodes, a distinct change of measured impedance has been detected after adding 1–5 µL (with dead or live Gram-positive Lysinibacillus sphaericus JG-A12 cells to 20 µL DI water inside the ring top electrode. We relate observed change of measured impedance to change of membrane potential of L. sphaericus JG-A12 cells. In contrast to impedance measurements, optical density (OD) measurements cannot be used to distinguish between dead and live cells. Dead L. sphaericus JG-A12 cells have been obtained by adding 0.02 mg/mL of the antibiotics tetracycline and 0.1 mg/mL chloramphenicol to a batch with OD0.5 and by incubation for 24 h, 30 °C, 120 rpm in the dark. For impedance measurements, we have used batches with a cell density of 25.5 × 108 cells/mL (OD8.5) and 270.0 × 108 cells/mL (OD90.0). The impedance biochip PS5 can be used to detect the more resistive and less capacitive live L. sphaericus JG-A12 cells. Also, the impedance biochip BS5 can be used to detect the less resistive and more capacitive dead L. sphaericus JG-A12 cells. An outlook on the application of the impedance biochips for high-throughput drug screening, e.g., against multi-drug-resistant Gram-positive bacteria, is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号