共查询到20条相似文献,搜索用时 11 毫秒
1.
As sessile organisms, plants must tolerate various environmental stresses. Plant hormones play vital roles in plant responses to biotic and abiotic stresses. Among these hormones, jasmonic acid (JA) and its precursors and derivatives (jasmonates, JAs) play important roles in the mediation of plant responses and defenses to biotic and abiotic stresses and have received extensive research attention. Although some reviews of JAs are available, this review focuses on JAs in the regulation of plant stress responses, as well as JA synthesis, metabolism, and signaling pathways. We summarize recent progress in clarifying the functions and mechanisms of JAs in plant responses to abiotic stresses (drought, cold, salt, heat, and heavy metal toxicity) and biotic stresses (pathogen, insect, and herbivore). Meanwhile, the crosstalk of JA with various other plant hormones regulates the balance between plant growth and defense. Therefore, we review the crosstalk of JAs with other phytohormones, including auxin, gibberellic acid, salicylic acid, brassinosteroid, ethylene, and abscisic acid. Finally, we discuss current issues and future opportunities in research into JAs in plant stress responses. 相似文献
2.
Sophie Goulitquer Dr. Andrés Ritter Dr. François Thomas Cyrille Ferec Jean‐Pierre Salaün Dr. Philippe Potin Dr. 《Chembiochem : a European journal of chemical biology》2009,10(6):977-982
With a little kelp from my friends : In response to biotic and abiotic stress, the brown algal kelp Laminaria digitata releases volatile fatty acid aldehydes under laboratory conditions and in its natural environment (red). In response to 4‐HHE treatment, L. digitata releases (13S)‐HOTrE (green). These results support the hypothesis that these compounds may mediate kelp responses to stress.
3.
Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses 总被引:5,自引:0,他引:5
Dicko MH Gruppen H Barro C Traore AS van Berkel WJ Voragen AG 《Journal of chemical ecology》2005,31(11):2671-2688
Contents of phenolic compounds and related enzymes before and after sorghum grain germination were compared between varieties
either resistant or susceptible to biotic (sooty stripe, sorghum midge, leaf anthracnose, striga, and grain molds) and abiotic
(lodging, drought resistance, and photoperiod sensitivity) stresses. Independent of grain germination, sorghum varieties resistant
to biotic and abiotic stresses had on average higher contents of proanthocyanidins (PAs), 3-deoxyanthocyanidins (3-DAs), and
flavan-4-ols than susceptible varieties. Results show that content of 3-DAs is a good marker for sorghum resistance to both
biotic and abiotic stresses because it correlates with resistance to all stresses except for photoperiod sensitivity. The
second good marker for stress resistance is content of PAs. Total phenolic compounds and the activities of related enzymes
are not good markers for stress resistance in sorghum grains. 相似文献
4.
Amandeep Kaur Alok Sharma Madhu Sameer Dixit Kashmir Singh Santosh Kumar Upadhyay 《International journal of molecular sciences》2022,23(23)
The hyperosmolality-gated calcium-permeable channels (OSCA) are pore-forming transmembrane proteins that function as osmosensors during various plant developmental processes and stress responses. In our analysis, through in silico approaches, a total of 42 OSCA genes are identified in the Triticum aestivum genome. A phylogenetic analysis reveals the close clustering of the OSCA proteins of Arabidopsis thaliana, Oryza sativa, and T. aestivum in all the clades, suggesting their origin before the divergence of dicots and monocots. Furthermore, evolutionary analyses suggest the role of segmental and tandem duplication events (Des) and purifying selection pressure in the expansion of the OSCA gene family in T. aestivum. Expression profiling in various tissue developmental stages and under abiotic and biotic stress treatments reveals the probable functioning of OSCA genes in plant development and the stress response in T. aestivum. In addition, protein–protein and protein–chemical interactions reveal that OSCA proteins might play a putative role in Ca2+-mediated developmental processes and adaptive responses. The miRNA interaction analysis strengthens the evidence for their functioning in various biological processes and stress-induced signaling cascades. The current study could provide a foundation for the functional characterization of TaOSCA genes in future studies. 相似文献
5.
6.
The Role of Plant Progesterone in Regulating Growth,Development, and Biotic/Abiotic Stress Responses
Hua Li Lulu Chen Hongyu Chen Ruili Xue Yuexia Wang Jianbo Song 《International journal of molecular sciences》2022,23(18)
Progesterone is a steroid hormone that performs important functions in mammals. However, studies on its physiological functions in plants have gradually increased in recent years. Therefore, this review summarizes the regulatory functions of progesterone on plant growth and development, as well as its response to stress. Moreover, the plant metabolic processes of progesterone are also discussed. Overall, progesterone is ubiquitous in plants and can regulate numerous plant physiological processes at low concentrations. Since progesterone shares similar characteristics with plant hormones, it is expected to become a candidate for plant hormone. However, most of the current research on progesterone in plants is limited to the physiological level, and more molecular level research is needed to clarify progesterone signaling pathways. 相似文献
7.
Hui Wei Ali Movahedi Guoyuan Liu Yixin Li Shiwei Liu Chunmei Yu Yanhong Chen Fei Zhong Jian Zhang 《International journal of molecular sciences》2022,23(1)
Poplar is an illustrious industrial woody plant with rapid growth, providing a range of materials, and having simple post-treatment. Various kinds of environmental stresses limit its output. Plant annexin (ANN) is a calcium-dependent phospholipid-binding protein involved in plant metabolism, growth and development, and cooperatively regulating drought resistance, salt tolerance, and various stress responses. However, the features of the PtANN gene family and different stress responses remain unknown in poplar. This study identified 12 PtANN genes in the P. trichocarpa whole-genome and PtANNs divided into three subfamilies based on the phylogenetic tree. The PtANNs clustered into the same clade shared similar gene structures and conserved motifs. The 12 PtANN genes were located in ten chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the PtANN4 homogenous with AtANN1 was detected localized in the cytoplasm and plasma membrane. In addition, expression levels of PtANNs were induced by multiple abiotic stresses, which indicated that PtANNs could widely participate in response to abiotic stress. These results revealed the molecular evolution of PtANNs and their profiles in response to abiotic stress. 相似文献
8.
9.
10.
Khalid Anwar Rohit Joshi Om Parkash Dhankher Sneh L. Singla-Pareek Ashwani Pareek 《International journal of molecular sciences》2021,22(11)
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants’ responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists. 相似文献
11.
12.
In Nature plants are constantly challenged by a variety of environmental stresses that could lead to disruptions in cellular homeostasis. Programmed cell death (PCD) is a fundamental cellular process that is often associated with defense responses to pathogens, during development and in response to abiotic stresses in fungi, animals and plants. Although there are many characteristics shared between different types of PCD events, it remains unknown whether a common mechanism drives various types of PCD in eukaryotes. One candidate regulator for such a mechanism is Bax Inhibitor-1 (BI-1), an evolutionary conserved, endoplasmic reticulum (ER)-resident protein that represents an ancient cell death regulator that potentially regulates PCD in all eukaryotes. Recent findings strongly suggested that BI-1 plays an important role in the conserved ER stress response pathway to modulate cell death induction in response to multiple types of cell death signals. As ER stress signaling pathways has been suggested to play important roles not only in the control of ER homeostasis but also in other biological processes such as the response to pathogens and abiotic stress in plants, BI-1 might function to control the convergence point that modulates the level of the “pro-survival and pro-death” signals under multiple stress conditions. 相似文献
13.
14.
15.
16.
17.
18.
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses. 相似文献
19.