首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca2+ elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca2+ and blocking vesicular glutamate transporters, N- and P/Q-type Ca2+ channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein. Enmein also decreased the phosphorylation of PKC, PKC-α, and myristoylated alanine-rich C kinase substrates in synaptosomes. In the KA rat model, intraperitoneal administration of enmein 30 min before intraperitoneal injection of KA reduced neuronal cell death, glial cell activation, and glutamate elevation in the hippocampus. Furthermore, in the hippocampi of KA rats, enmein increased the expression of synaptic markers (synaptophysin and postsynaptic density protein 95) and excitatory amino acid transporters 2 and 3, which are responsible for glutamate clearance, whereas enmein decreased the expression of glial fibrillary acidic protein (GFAP) and CD11b. These results indicate that enmein not only inhibited glutamate release from cortical synaptosomes by suppressing Ca2+ influx and PKC but also increased KA-induced hippocampal neuronal death by suppressing gliosis and decreasing glutamate levels by increasing glutamate uptake.  相似文献   

2.
Current anti-seizure drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective anti-seizure drugs, and medicinal plants provide an attractive source for new compounds. This study aimed to evaluate the possible anti-seizure and neuroprotective effects of neferine, an alkaloid from the lotus seed embryos of Nelumbo nucifera, in a kainic acid (KA)-induced seizure rat model and its underlying mechanisms. Rats were intraperitoneally (i.p.) administrated neferine (10 and 50 mg/kg) 30 min before KA injection (15 mg/kg, i.p.). Neferine pretreatment increased seizure latency and reduced seizure scores, prevented glutamate elevation and neuronal loss, and increased presynaptic protein synaptophysin and postsynaptic density protein 95 expression in the hippocampi of rats with KA. Neferine pretreatment also decreased glial cell activation and proinflammatory cytokine (interleukin-1β, interleukin-6, tumor necrosis factor-α) expression in the hippocampi of rats with KA. In addition, NOD-like receptor 3 (NLRP3) inflammasome, caspase-1, and interleukin-18 expression levels were decreased in the hippocampi of seizure rats pretreated with neferine. These results indicated that neferine reduced seizure severity, exerted neuroprotective effects, and ameliorated neuroinflammation in the hippocampi of KA-treated rats, possibly by inhibiting NLRP3 inflammasome activation and decreasing inflammatory cytokine secretion. Our findings highlight the potential of neferine as a therapeutic option in the treatment of epilepsy.  相似文献   

3.
The neuropathology of Alzheimer’s disease (AD) is characterized by intracellular aggregation of hyperphosphorylated tau and extracellular accumulation of beta-amyloid (Aβ). Death-associated protein kinase 1 (DAPK1), as a novel therapeutic target, shows promise for the treatment of human AD, but the regulatory mechanisms of DAPK1 expression in AD remain unclear. In this study, we identified miR-143-3p as a promising candidate for targeting DAPK1. miR-143-3p directly bound to the 3′ untranslated region of human DAPK1 mRNA and inhibited its translation. miR-143-3p decreased tau phosphorylation and promoted neurite outgrowth and microtubule assembly. Moreover, miR-143-3p attenuated amyloid precursor protein (APP) phosphorylation and reduced the generation of Aβ40 and Aβ42. Furthermore, restoring DAPK1 expression with miR-143-3p antagonized the effects of miR-143-3p in attenuating tau hyperphosphorylation and Aβ production. In addition, the miR-143-3p levels were downregulated and correlated inversely with the expression of DAPK1 in the hippocampus of AD patients. Our results suggest that miR-143-3p might play critical roles in regulating both aberrant tau phosphorylation and amyloidogenic processing of APP by targeting DAPK1 and thus offer a potential novel therapeutic strategy for AD.  相似文献   

4.
The inhibition of synaptic glutamate release to maintain glutamate homeostasis contributes to the alleviation of neuronal cell injury, and accumulating evidence suggests that natural products can repress glutamate levels and associated excitotoxicity. In this study, we investigated whether eupatilin, a constituent of Artemisia argyi, affected glutamate release in rat cortical nerve terminals (synaptosomes). Additionally, we evaluated the effect of eupatilin in an animal model of kainic acid (KA) excitotoxicity, particularly on the levels of glutamate and N-methyl-D-aspartate (NMDA) receptor subunits (GluN2A and GluN2B). We found that eupatilin decreased depolarization-evoked glutamate release from rat cortical synaptosomes and that this effect was accompanied by a reduction in cytosolic Ca2+ elevation, inhibition of P/Q-type Ca2+ channels, decreased synapsin I Ca2+-dependent phosphorylation and no detectable effect on the membrane potential. In a KA-induced glutamate excitotoxicity rat model, the administration of eupatilin before KA administration prevented neuronal cell degeneration, glutamate elevation, glutamate-generating enzyme glutaminase increase, excitatory amino acid transporter (EAAT) decrease, GluN2A protein decrease and GluN2B protein increase in the rat cortex. Taken together, the results suggest that eupatilin depresses glutamate exocytosis from cerebrocortical synaptosomes by decreasing P/Q-type Ca2+ channels and synapsin I phosphorylation and alleviates glutamate excitotoxicity caused by KA by preventing glutamatergic alterations in the rat cortex. Thus, this study suggests that eupatilin can be considered a potential therapeutic agent in the treatment of brain impairment associated with glutamate excitotoxicity.  相似文献   

5.
Cell surface proteins carrying N-glycans play important roles in inter- and intracellular processes including cell adhesion, development, and cellular recognition. Dysregulation of the glycosylation machinery has been implicated in various diseases, and investigation of global differential cell surface proteome effects due to the loss of N-glycosylation will provide comprehensive insights into their pathogenesis. Cell surface proteins isolated from Parent Pro–5 CHO cells (W5 cells), two CHO mutants with loss of N-glycosylation function derived from Pro–5 CHO (Lec1 and Lec4 cells), were subjected to proteome analysis via high-resolution LCMS. We identified 44 and 43 differentially expressed membrane proteins in Lec1 and Lec4 cells, respectively, as compared to W5 cells. The defective N-glycosylation mutants showed increased abundance of integrin subunits in Lec1 and Lec4 cells at the cell surface. We also found significantly reduced levels of IGF-1R (Insulin like growth factor-1 receptor); a receptor tyrosine kinase; and the GTPase activating protein IQGAP1 (IQ motif-containing GTPase activating protein), a highly conserved cytoplasmic scaffold protein) in Lec1 and Lec4 cells. In silico docking studies showed that the IQ domain of IQGAP1 interacts with the kinase domain of IGF-1R. The integrin signaling and insulin growth factor receptor signaling were also enriched according to GSEA analysis and pathway analysis of differentially expressed proteins. Significant reductions of phosphorylation of ERK1 and ERK2 in Lec1 and Lec4 cells were observed upon IGF-1R ligand (IGF-1 LR3) stimulation. IGF-1 LR3, known as Long arginine3-IGF-1, is a synthetic protein and lengthened analog of insulin-like growth factor 1. The work suggests a novel mechanism for the activation of IGF-1 dependent ERK signaling in CHO cells, wherein IQGAP1 plausibly functions as an IGF-1R-associated scaffold protein. Appropriate glycosylation by the enzymes MGAT1 and MGAT5 is thus essential for processing of cell surface receptor IGF-1R, a potential binding partner in IQGAP1 and ERK signaling, the integral components of the IGF pathway.  相似文献   

6.
Infantile neuronal ceroid lipofuscinosis (INCL), the most severe form of neuronal ceroid lipofuscinoses, is caused by mutations in the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). Typical symptoms of this disease include progressive psychomotor developmental retardation, visual failure, seizures, and premature death. Here, we investigated seizure activity and relevant pathological changes in PPT1 knock-in mice (PPT1 KI). The behavior studies in this study demonstrated that PPT1 KI mice had no significant seizure activity until 7 months of age, and local field potentials also displayed epileptiform activity at the same age. The expression levels of Iba-1 and CD68 demonstrated, by Western blot analysis, the inflammatory cytokine TNF-α content measured with enzyme-linked immunosorbent assay, and the number of microglia demonstrated by immunohistochemistry (IHC) were significantly increased at age of 7 months, all of which indicate microglia activation at an age of seizure onset. The increased expression of GFAP were seen at an earlier age of 4 months, and such an increase reached its peak at age of 6 months, indicating that astrocyte activation precedes microglia. The purinergic P2X7 receptor (P2X7R) is an ATP-sensitive ionic channel that is highly expressed in microglia and is fundamental to microglial activation, proliferation, cytokines release and epilepsy. We show that the ATP concentration in hippocampal tissue in PPT1 KI mice was increased using an enhanced ATP assay kit and demonstrated that the antagonist of P2X7R, A-438079, significantly reduced seizures in PPT1 KI mice. In contrast to glial cell activation and proliferation, a significant reduction in synaptic proteins GABAAR was seen in PPT1 KI mice. These results indicate that seizure in PPT1 KI mice may be associated with microglial activation involved in ATP-sensitive P2X7R signaling and impaired inhibitory neurotransmission.  相似文献   

7.
The AIF/CypA complex exerts a lethal activity in several rodent models of acute brain injury. Upon formation, it translocates into the nucleus of cells receiving apoptotic stimuli, inducing chromatin condensation, DNA fragmentation, and cell death by a caspase-independent mechanism. Inhibition of this complex in a model of glutamate-induced cell death in HT-22 neuronal cells by an AIF peptide (AIF(370-394)) mimicking the binding site on CypA, restores cell survival and prevents brain injury in neonatal mice undergoing hypoxia-ischemia without apparent toxicity. Here, we explore the effects of the peptide on SH-SY5Y neuroblastoma cells stimulated with staurosporine (STS), a cellular model widely used to study Parkinson’s disease (PD). This will pave the way to understanding the role of the complex and the potential therapeutic efficacy of inhibitors in PD. We find that AIF(370-394) confers resistance to STS-induced apoptosis in SH-SY5Y cells similar to that observed with CypA silencing and that the peptide works on the AIF/CypA translocation pathway and not on caspases activation. These findings suggest that the AIF/CypA complex is a promising target for developing novel therapeutic strategies against PD.  相似文献   

8.
Therapies for stroke have remained elusive in the past despite the great relevance of this pathology. However, recent results have provided strong evidence that postsynaptic density protein-95 (PSD-95) can be exploited as an efficient target for stroke neuroprotection by strategies able to counteract excitotoxicity, a major mechanism of neuronal death after ischemic stroke. This scaffold protein is key to the maintenance of a complex framework of protein interactions established at the postsynaptic density (PSD) of excitatory neurons, relevant to neuronal function and survival. Using cell penetrating peptides (CPPs) as therapeutic tools, two different approaches have been devised and advanced to different levels of clinical development. First, nerinetide (Phase 3) and AVLX-144 (Phase 1) were designed to interfere with the coupling of the ternary complex formed by PSD-95 with GluN2B subunits of the N-methyl-D-aspartate type of glutamate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS). These peptides reduced neurotoxicity derived from NMDAR overactivation, decreased infarct volume and improved neurobehavioral results in different models of ischemic stroke. However, an important caveat to this approach was PSD-95 processing by calpain, a pathological mechanism specifically induced by excitotoxicity that results in a profound alteration of survival signaling. Thus, a third peptide (TP95414) has been recently developed to interfere with PSD-95 cleavage and reduce neuronal death, which also improves neurological outcome in a preclinical mouse model of permanent ischemia. Here, we review recent advancements in the development and characterization of PSD-95-targeted CPPs and propose the combination of these two approaches to improve treatment of stroke and other excitotoxicity-associated disorders.  相似文献   

9.
Cancer is a leading cause of death worldwide. In many cases, the treatment of the disease is limited due to the metastasis of cells to distant locations of the body through the blood and lymphatic drainage. Most of the anticancer therapeutic options focus mainly on the inhibition of tumor cell growth or the induction of cell death, and do not consider the molecular basis of metastasis. The aim of this work is to provide a comprehensive review focusing on cancer metastasis and the mitogen-activated protein kinase (MAPK) pathway (ERK/JNK/P38 signaling) as a crucial modulator of this process.  相似文献   

10.
Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.  相似文献   

11.
Alzheimer’s disease (AD) is the major cause of dementia, and affected individuals suffer from severe cognitive, mental, and functional impairment. Histologically, AD brains are basically characterized by the presence of amyloid plaques and neurofibrillary tangles. Previous reports demonstrated that protein kinase CK1δ influences the metabolism of amyloid precursor protein (APP) by inducing the generation of amyloid-β (Aβ), finally contributing to the formation of amyloid plaques and neuronal cell death. We therefore considered CK1δ as a promising therapeutic target and suggested an innovative strategy for the treatment of AD based on peptide therapeutics specifically modulating the interaction between CK1δ and APP. Initially, CK1δ-derived peptides manipulating the interactions between CK1δ and APP695 were identified by interaction and phosphorylation analysis in vitro. Selected peptides subsequently proved their potential to penetrate cells without inducing cytotoxic effects. Finally, for at least two of the tested CK1δ-derived peptides, a reduction in Aβ levels and amyloid plaque formation could be successfully demonstrated in a complex cell culture model for AD. Consequently, the presented results provide new insights into the interactions of CK1δ and APP695 while also serving as a promising starting point for further development of novel and highly innovative pharmacological tools for the treatment of AD.  相似文献   

12.
The neurotransmitter glutamate plays an essential role in excitatory neurotransmission; however, excessive amounts of glutamate lead to excitotoxicity, which is the most common pathogenic feature of numerous brain disorders. This study aimed to investigate the role of butyl 2-[2-(2-fluorophenyl)acetamido]benzoate (HFP034), a synthesized anthranilate derivative, in the central glutamatergic system. We used rat cerebro-cortical synaptosomes to examine the effect of HFP034 on glutamate release. In addition, we used a rat model of kainic acid (KA)-induced glutamate excitotoxicity to evaluate the neuroprotective potential of HFP034. We showed that HFP034 inhibits 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes, and this inhibition was absent in the absence of extracellular calcium. HFP034-mediated inhibition of glutamate release was associated with decreased 4-AP-evoked Ca2+ level elevation and had no effect on synaptosomal membrane potential. The inhibitory effect of HFP034 on evoked glutamate release was suppressed by blocking P/Q-type Ca2+ channels and protein kinase C (PKC). Furthermore, HFP034 inhibited the phosphorylation of PKC and its substrate, myristoylated alanine-rich C kinase substrate (MARCKS) in synaptosomes. We also observed that HFP034 pretreatment reduced neuronal death, glutamate concentration, glial activation, and the levels of endoplasmic reticulum stress-related proteins, calpains, glucose-regulated protein 78 (GRP 78), C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of KA-injected rats. We conclude that HFP034 is a neuroprotective agent that prevents glutamate excitotoxicity, and we suggest that this effect involves inhibition of presynaptic glutamate release through the suppression of P/Q-type Ca2+ channels and PKC/MARCKS pathways.  相似文献   

13.
Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35–55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death. In EAE-affected mice, axonal damage prevails from the early disease phase, as revealed by analysis of neurofilament light (NFL) leakage into the sera along the disease duration, as well as by immunohistological examination. Elevation of interstitial glutamate concentrations measured in the cerebrospinal fluid (CSF) implies that glutamate excess plays a role in the damage processes inflicted by this disease. GA applied as a therapeutic regimen to mice with apparent clinical symptoms significantly reduces the pathological manifestations, namely apoptotic cell death, NFL leakage, histological tissue damage, and glutamate excess, thus corroborating the neuroprotective consequences of this treatment.  相似文献   

14.
Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways.  相似文献   

15.
High-grade serous ovarian carcinoma (HGSOC) is the most frequent and malignant form of ovarian cancer. A local renin–angiotensin system (RAS) has been found in the ovary, and changes in selected components of this system were observed in pathological states and also in ovarian cancer. In the present study, we examined the effect of three peptides, Ang-(1-7), Ang-(1-9) and Ang-(3-7), on proliferation and motility of the OVPA8 cell line, a new well-defined and preclinical model of HGSOC. We confirmed the presence of mRNA for all angiotensin receptors in the tested cells. Furthermore, our findings indicate that all tested angiotensin peptides increased the metabolic serum in the medium by activation of cell defense mechanisms such as nuclear factor kappaB signaling pathway andapoptosis. Moreover, tested angiotensin peptides intensified serum starvation-induced cell cycle arrest at the G0/G1 phase. In the case of Ang-(3-7), a significant decrease in the number of Ki67 positive cells (Ki67+) and reduced percentage of activated ERK1/2 levels in ovarian cancer cells were additionally reported. The angiotensin-induced effect of the accumulation of cells in the G0/G1 phase was not observed in OVPA8 cells growing on the medium with 10% FBS. Moreover, in the case of Ang-(3-7), the tendency was quite the opposite. Ang-(1-7) but not Ang-(1-9) or Ang-(3-7) increased the mobility of reluctant-to-migrate OVAP8 cells cultured in the serum-free medium. In any cases, the changes in the expression of VIM and HIF1A gene, associated with epithelial–mesenchymal transition (EMT), were not observed. In conclusion, we speculate that the adaptation to starvation in nutrient-deprived tumors can be modulated by peptides from the renin–angiotensin system. The influence of angiotensin peptides on cancer cells is highly dependent on the availability of growth factors and nutrients.  相似文献   

16.
Metformin, an anti-hyperglycemic drug of the biguanide class, exerts positive effects in several non-diabetes-related diseases. In this study, we aimed to examine the protective effects of metformin against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal damage in rats and determine the mechanisms of its protective effects. Male Sprague–Dawley rats (7 to 9 weeks old) were used in this study. Following intravitreal injection of NMDA (200 nmol/eye), the number of neuronal cells in the ganglion cell layer and parvalbumin-positive amacrine cells decreased, whereas the number of CD45-positive leukocytes and Iba1-positive microglia increased. Metformin attenuated these NMDA-induced responses. The neuroprotective effect of metformin was abolished by compound C, an inhibitor of AMP-activated protein kinase (AMPK). The AMPK activator, AICAR, exerted a neuroprotective effect in NMDA-induced retinal injury. The MEK1/2 inhibitor, U0126, reduced the neuroprotective effect of metformin. These results suggest that metformin protects against NMDA-induced retinal neurotoxicity through activation of the AMPK and MEK/extracellular signal-regulated kinase (ERK) signaling pathways. This neuroprotective effect could be partially attributable to the inhibitory effects on inflammatory responses.  相似文献   

17.
Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.  相似文献   

18.
Glutamate-mediated toxicity is implicated in various neuropathologic conditions, and activation of ionotropic and metabotropic glutamate receptors is considered to be the most important mechanism. It has been reported that pharmacological saturation of metabotropic glutamate receptors (mGluRs) can facilitate N-methyl-d-aspartate receptor (NMDAR) related signaling cascades, but the mechanism leading to mGluR-NMDAR interactions in excitotoxic neuronal injury has remained unidentified. In the present study, we investigated the role of mGluR5 in the regulation of N-methyl-d-aspartate (NMDA)-induced excitotoxicity in differentiated PC12 cells. We found that activation of mGluR5 with the specific agonist R,S-2-chloro-5-hydroxyphenylglycine (CHPG) increased cell viability and inhibited lactate dehydrogenase (LDH) release in a dose-dependent manner. CHPG also inhibited an increase in the Bax/Bcl-2 ratio, attenuated cleavage of caspase-9 and caspase-3, and reduced apoptotic cell death after NMDA treatment. The NMDA-induced mitochondrial dysfunction, as indicated by mitochondrial reactive oxygen species (ROS) generation, collapse of mitochondrial membrane potential (MMP), and cytochrome c release, was also partly prevented by CHPG treatment. Furthermore, CHPG blocked the NMDA-induced interaction of NMDAR with postsynaptic density protein-95 (PSD-95), but had no effects on intracellular calcium concentrations. All these results indicated that activation of mGluR5 protects differentiated PC12 cells from NMDA-induced neuronal excitotoxicity by disrupting NMDAR-PSD-95 interaction, which might be an ideal target for investigating therapeutic strategies in various neurological diseases where excitotoxicity may contribute to their pathology.  相似文献   

19.
Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.  相似文献   

20.
Nasopharyngeal carcinoma (NPC) has a higher incidence in Taiwan than worldwide. Although it is a radiosensitive malignancy, cancer recurrence is still high in the advanced stages because of its ability to induce lymph node metastasis. Picrasidine I from Picrasma quassioides has been reported as a potential drug for targeting multiple signaling pathways. The present study aimed to explore the role of picrasidine I in the apoptosis of NPC cells. Our results show that picrasidine I induced cytotoxic effects in NPC cells and caused cell cycle arrest in the sub-G1, S, and G2/M phases. Western blot analysis further demonstrated that the modulation of apoptosis through the extrinsic and intrinsic pathways was involved in picrasidine I-induced cell death. Downregulation of the ERK1/2 and Akt signaling pathways was also found in picrasidine I-induced apoptosis. Additionally, the apoptosis array showed that picrasidine I significantly increased heme oxygenase-1 (HO-1) expression, which could act as a critical molecule in picrasidine I-induced apoptosis in NPC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets also revealed that the HMOX1 mRNA level (HO-1) is lower in patients with head and neck squamous carcinoma (HNSCC) and NPC than in patients without cancer. Our study indicated that picrasidine I exerts anticancer effects in NPC by modulating HO-1 via the ERK and Akt signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号