首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
2.
The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.  相似文献   

3.
4.
5.
Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.  相似文献   

6.
7.
8.
9.
10.
Drought seriously affects the yield and quality of apples. γ-aminobutyric acid (GABA) plays an important role in the responses of plants to various stresses. However, the role and possible mechanism of GABA in the drought response of apple seedlings remain unknown. To explore the effect of GABA on apple seedlings under drought stress, seedlings of Malus hupehensis were treated with seven concentrations of GABA, and the response of seedlings under 15-day drought stress was observed. The results showed that 0.5 mM GABA was the most effective at relieving drought stress. Treatment with GABA reduced the relative electrical conductivity and MDA content of leaves induced by drought stress and significantly increased the relative water content of leaves. Exogenous GABA significantly decreased the stomatal conductance and intercellular carbon dioxide concentration and transpiration rate, and it significantly increased the photosynthetic rate under drought. GABA also reduced the accumulation of superoxide anions and hydrogen peroxide in leaf tissues under drought and increased the activities of POD, SOD, and CAT and the content of GABA. Exogenous treatment with GABA acted through the accumulation of abscisic acid (ABA) in the leaves to significantly decrease stomatal conductance and increase the stomatal closure rate, and the levels of expression of ABA-related genes PYL4, ABI1, ABI2, HAB1, ABF3, and OST1 changed in response to drought. Taken together, exogenous GABA can enhance the drought tolerance of apple seedlings.  相似文献   

11.
12.
Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested.  相似文献   

13.
As essential calcium ion (Ca2+) sensors in plants, calcium-dependent protein kinases (CDPKs) function in regulating the environmental adaptation of plants. However, the response mechanism of CDPKs to salt stress is not well understood. In the current study, the wheat salt-responsive gene TaCDPK27 was identified. The open reading frame (ORF) of TaCDPK27 was 1875 bp, coding 624 amino acids. The predicted molecular weight and isoelectric point were 68.905 kDa and 5.6, respectively. TaCDPK27 has the closest relationship with subgroup III members of the CDPK family of rice. Increased expression of TaCDPK27 in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. TaCDPK27 was mainly located in the cytoplasm. After NaCl treatment, some of this protein was transferred to the membrane. The inhibitory effect of TaCDPK27 silencing on the growth of wheat seedlings was slight. After exposure to 150 mM NaCl for 6 days, the NaCl stress tolerance of TaCDPK27-silenced wheat seedlings was reduced, with shorter lengths of both roots and leaves compared with those of the control seedlings. Moreover, silencing of TaCDPK27 further promoted the generation of reactive oxygen species (ROS); reduced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); aggravated the injury to photosystem II (PS II); and increased programmed cell death (PCD) in wheat leaves under NaCl treatment, confirming that the TaCDPK27-silenced seedlings exhibited more NaCl injury than control seedlings. Taken together, the decrease in NaCl tolerance in TaCDPK27-silenced seedlings was due to excessive ROS accumulation and subsequent aggravation of the NaCl-induced PCD. TaCDPK27 may be essential for positively regulating salt tolerance in wheat seedlings.  相似文献   

14.
15.
16.
17.
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.  相似文献   

18.
Drought stress is one of the major environmental problems in the growth of crops and woody perennials, but it is getting worse due to the global climate crisis. XERICO, a RING (Really Interesting New Gene) zinc-finger E3 ubiquitin ligase, has been shown to be a positive regulator of drought tolerance in plants through the control of abscisic acid (ABA) homeostasis. We characterized a poplar (Populus trichocarpa) RING protein family and identified the closest homolog of XERICO called PtXERICO. Expression of PtXERICO is induced by both salt and drought stress, and by ABA treatment in poplars. Overexpression of PtXERICO in Arabidopsis confers salt and ABA hypersensitivity in young seedlings, and enhances drought tolerance by decreasing transpirational water loss. Consistently, transgenic hybrid poplars overexpressing PtXERICO demonstrate enhanced drought tolerance with reduced transpirational water loss and ion leakage. Subsequent upregulation of genes involved in the ABA homeostasis and drought response was confirmed in both transgenic Arabidopsis and poplars. Taken together, our results suggest that PtXERICO will serve as a focal point to improve drought tolerance of woody perennials.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号