首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文针对响应波长8~12μmMCT焦平面阵列探测器对MCT薄膜材料性能要求,分析了液相外延(LPE)和分子束外延(MBE)生长的MCT薄膜,究竟哪一种方法生长的薄膜能更好地满足焦平面阵列探测器的技术要求。根据LPE工艺的日趋成熟所暴露出来的缺点,MBE工艺的进展与理论上预示的优点在实验中得到了证实。两者相比较,它们相互易位,过去10多年把LPE作为生长MCT薄膜的主要方法,现在已转向以MBE(也包括MOCVD)作为今后生长MCT薄膜的主攻方向。  相似文献   

2.
碲镉汞薄膜材料   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
HgCdTe薄膜中的Void缺陷严重影响面阵器件的有效元数。对用分子束外延法在GaAs衬底上生长的HgCdTe薄膜中的Void缺陷进行了 形貌,剖面观测和能谱分析。  相似文献   

5.
碲镉汞红外焦平面器件技术进展   总被引:3,自引:1,他引:3       下载免费PDF全文
近十年碲镉汞第二代红外焦平面探测器应用呈现爆发式增长,也是第三代焦平面技术快速发展的十年。文中对近十年来碲镉汞红外焦平面探测器技术的发展进行了简单的回顾,并结合碲镉汞红外焦平面探测器的应用,对在碲镉汞红外焦平面探测器技术方面的研究工作和工程应用进行了总结,最后,对未来碲镉汞红外焦平面探测器技术的发展进行了展望。  相似文献   

6.
7.
通过液相外延方法,在碲锌镉衬底上制备了原位Au掺杂碲镉汞薄膜材料,采用金相显微镜、X光双晶衍射仪、二次离子质谱仪、Hall测试、少子寿命测试等手段对Au掺杂的碲镉汞薄膜材料进行了表征,外延片的表面形貌、晶格质量等和常规的碲镉汞外延材料基本相当,少子寿命较常规材料提高至少一个量级,芯片R0A提高至少5倍,并成功制备出了截止波长为10 μm的256×256探测器芯片,响应率非均匀性为2.85%,有效像元率为99.2%。  相似文献   

8.
开管汽相外延法生长碲镉汞晶膜   总被引:1,自引:0,他引:1  
报道用开管汽相外延法生长长波碲镉汞晶膜的结果。实验表明,用这种方法容易得到适合红外焦平面列阵器件制备用的大面积均匀优质碲镉汞晶膜。  相似文献   

9.
碲镉汞富碲垂直液相外延技术   总被引:1,自引:1,他引:0  
研究了碲镉汞富碲垂直液相外延技术.在研究该关键技术的过程中,提出了一种方法以检查外延前(Hg1-xCdx)1-yTey母液的均匀性.并且,通过减小生长腔体中的自由空间,对气体的对流和汞回流进行了抑制,及通过改进工艺过程中的温度控制方式来应对因对流和汞回流而造成的生长温度不确定性.在解决上述关键技术后,实现了碲镉汞垂直液相外延工艺的稳定性,所外延的中波碲镉汞材料的组分可重复性做到了±0.005,厚度控制能力达到了±5μm ,40×30mm2外延材料的横向组分均匀性(相对均方差)小于1.3×10-3,同生长批次材料片与片之间的组分和厚度差异分别小于0.001和1μm.在10mm线度上,表面起伏小于1μm.经热处理后,中波汞空位p型材料在77K下具有较高的空穴迁移率.另外,和水平推舟技术相比,垂直碲镉汞液相外延在提供大批量和大面积相同性能材料方面具有明显的优势,这对于二代碲镉汞红外焦平面批生产技术和拼接型超大规模红外焦平面技术的发展都具有重要的意义.  相似文献   

10.
李燕兰  高达  李震  王丹  王丛  谭振  孙浩 《激光与红外》2022,52(8):1204-1210
随着大面阵红外探测器技术研究越来越深入,大尺寸红外探测器材料技术成为制约红外探测器技术发展的重要环节。本文介绍了Sofradir公司、Teledyne公司、Raytheon公司、AIM公司红外探测器材料研究的现状,从生长方式、衬底选择等方向分析大尺寸碲镉汞材料研究现状与趋势。  相似文献   

11.
碲锌镉衬底缺陷对液相外延碲镉汞薄膜结构的影响   总被引:4,自引:0,他引:4  
采用红外显微镜、X射线双晶回摆衍射法、X射线貌相术对CdZnTe衬底中的沉淀相、亚结构、组分偏析等缺陷进行了研究,并对用此衬底液相外延的HgCdTe薄膜作了测试。结果显示:CdZnTe衬底中亚晶界处聚集的位错在外延生长中呈发散状向薄膜中延伸,造成了薄膜形成亚晶界和更大面积的由位错引起的晶格畸变应力区域,影响了薄膜结构的完整性。  相似文献   

12.
碲镉汞材料具有响应速度快、量子效率高、带隙连续可调等优点,广泛应用于红外探测领域,本文报道了近年来中国电科11所在碲镉汞薄膜材料制备方面的技术进展。在碲锌镉衬底材料制备方面,已突破135mm碲锌镉晶体生长技术,碲锌镉衬底平均位错腐蚀坑密度(EPD) <1×104cm-2,具备了80mm×80mm规格碲锌镉衬底的批量生产能力。在液相外延碲镉汞薄膜制备方面,富碲水平液相外延碲镉汞薄膜平均位错腐蚀坑密度EPD<4×104cm-2,具备80mm×80mm规格碲镉汞薄膜的制备能力;富汞垂直液相外延实现高质量双层异质结碲镉汞薄膜材料批量化制备,该种材料的半峰宽(FWHM)控制在(20~40)arcsec范围内,碲镉汞薄膜厚度极差≤±06μm。在分子束外延碲镉汞薄膜方面,实现了6 in硅基碲镉汞材料制备,组分标准偏差≤00015,表面宏观缺陷密度≤100cm-2;碲锌镉基碲镉汞材料已具备50mm×50mm制备能力,组分标准偏差为0002,厚度标准偏差为0047μm。从探测器验证结果来看,基于富碲水平液相外延碲镉汞薄膜实现了1 k×1 k、2 k×2 k等规格红外焦平面探测器的工程化制备;采用双层异质结碲镉汞薄膜实现了高温工作、长波及甚长波探测器的制备;使用分子束外延制备的碲镉汞薄膜实现了27 k×27 k、54 k×54 k、8 k×8 k等规格红外焦平面探测器研制,在宇航领域有巨大的应用潜力。  相似文献   

13.
碲镉汞的液相外延生长   总被引:6,自引:2,他引:4  
设计了一种使用良好的石墨舟 ,建立了一套能进行开管液相外延的系统 ,并利用此系统在 Cd Zn Te衬底上和在富 Te的生长条件下生长了不同 x值的 Hg Cd Te外延薄膜 .通过对外延生长工艺的控制 ,外延薄膜的表面形貌有很大的改善 ,残留母液大为减少 ,外延薄膜的组分比较均匀 ,其电学性能得到较大改善 ,Hg Cd Te外延薄膜与Cd Zn Te衬底之间的互扩散非常少 ,外延膜的晶体结构也较完整 .  相似文献   

14.
设计了一种使用良好的石墨舟,建立了一套能进行开管液相外延的系统,并利用此系统在CdZnTe衬底上和在富Te的生长条件下生长了不同x值的HgCdTe外延薄膜.通过对外延生长工艺的控制,外延薄膜的表面形貌有很大的改善,残留母液大为减少,外延薄膜的组分比较均匀,其电学性能得到较大改善,HgCdTe外延薄膜与CdZnTe衬底之间的互扩散非常少,外延膜的晶体结构也较完整.  相似文献   

15.
碲镉汞薄膜材料电子工业部十一所陈世达碲镉汞探测器是目前最重要的红外探器之一,通过对材料组分x的调节,它可以探测1~20μm红外波长,在红外成象,红外、激光制导、激光雷达及激光探测方面有着极其广泛的用途。研究与发展多元和焦平面碲镉汞探测器件是国内外研究...  相似文献   

16.
文章叙述了第三代红外焦平面中所需求的碲镉汞分子束外延(MBE)的一些研究成 果。对GaAs、Si基大面积异质外延、表面缺陷抑制、p 型掺杂等MBE的主要难点问题进行了阐述。研究表明, 3 in材料的组分均匀性良好,组分x的偏差为0. 5%。晶格失配引发的孪晶缺陷可以通过合适的低温成核方法得到有效的抑制。在GaAs和Si衬底上外延的HgCdTe材料的(422) x射线衍射半峰宽( FWHM)的典型值为60~80arc·sec。大于2μm缺陷的表面密度可以控制在小于300cm- 2水平。研究发现As的表面黏附系数很低,对生长温度十分敏感,在170℃下约为1 ×10- 4。通过合适的退火,可以实现As的受主激活。采用碲镉汞多层材料已试制了长波n2on2p与p2on2n型掺杂异质结器件以及双色红外短波/中波焦平面探测器,本文报道了一些初步结果。  相似文献   

17.
18.
韩福忠  喻松林 《激光与红外》1997,27(2):104-105,108
本文概要叙述了128元长波碲镉汞焦平面器件的原理及研制工艺;CMOS互连后测试结果:峰值Dλ^*=3.4×10^10cmHz^1/2W^-1,Rvλ=1.2×10^8V/W,利用128元长波碲镉汞焦平面器件研制成功的热像仪成像情况。  相似文献   

19.
长波红外碲镉汞探测器   总被引:1,自引:0,他引:1  
梁晋穗 《红外》2003,18(6):1-8
1 引言 红外辐射最早是1800年英国的天文学家赫谢耳(W.Herschel)在研究太阳光谱的热效应时,用水银温度计测量各种颜色光的加热效果而发现的。1830年,L.Nobili利用塞贝克发现的温差电效应制成了“温差电型辐射探测器”;  相似文献   

20.
碲镉汞外延材料缺陷的研究进展   总被引:1,自引:1,他引:0  
王忆锋 《红外》2011,32(1):1-9
通过对近年来的部分国外文献进行归纳分析,介绍了碲镉汞(MCT)缺陷研究的现状.与其他类似的半导体相比,MCT以其显著的优势成为红外焦平面(FPA)器件中最为常用的窄带隙材料.MCT外延层中的缺陷可能会影响光敏元的性能,降低MCT焦平面器件的可用性.衬底类型、衬底晶向和生长期间的衬底温度等因素对MCT外延层的质量有明显影...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号