首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of near-field optical probes   总被引:1,自引:0,他引:1  
Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminum-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes in a photosensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambiguously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with the uncoated probes are discussed in relation to the probe characterization.  相似文献   

2.
3.
We describe a liquid-core optical fiber based on capillary tubing of Teflon AF 2400, which is a clear, amorphous fluoropolymer having a refractive index of 1.29. When filled with virtually any transparent liquid, the fiber is capable of transmitting light by total internal reflection. Loss below 3 dB/microm is demonstrated throughout much of the visible region for a 250-microm-i.d. fiber filled with water. The utility of this device in enhancing the intensity of Raman spectra of core liquids is demonstrated.  相似文献   

4.
A new boundary integral equation method for solving the near field in three-dimensional vector form in scanning near-field optical microscopy (SNOM) using Borgnis potentials as auxiliary functions is presented. A boundary integral equation of the electromagnetic fields, expressed by Borgnis potentials, is derived based on Green's theorem. The harmonic expansion in rotationally symmetric SNOM probe--sample systems is studied, and the three-dimensional electromagnetic problem is partly simplified into a two-dimensional one. The boundary conditions of Borgnis potentials both on dielectric boundaries and on perfectly conducting boundaries are derived. Relevant algorithms were studied, and a computer program was written. As an example, a SNOM probe-sample system composed of a round metal-covered probe and a sample with a flat surface has been numerically studied, and the computational results are given. This new method can be used efficiently for other electromagnetic field problems with round subwavelength structures.  相似文献   

5.
A novel, chemical-etching technique produces very high throughput, polarization-maintaining probes for near-field, scanning, optical microscopy (NSOM). The process includes coating the tips with aluminum and forming the apertures with a focused ion beam (FIB). The elliptical core fibers used resulted in elliptical apertures for the probes. The throughput of the probes depends on the incident polarization. For polarization parallel to the minor axis, the tip presents an insertion loss of only 20 dB for aperture widths of 55 nm. Probes have a typical polarization extinction of 100 to 1 in the far field. These tips produced NSOM images of gold dots on a GaAs substrate in reflection mode.  相似文献   

6.
Mononobe S  Naya M  Saiki T  Ohtsu M 《Applied optics》1997,36(7):1496-1500
We propose a new type of fiber probe with a nanometric protruding tip emerging from a metal film and describe a novel method, called the selective resin-coating method, for fabricating such probes. It is a reproducible etching process consisting of four steps and can be applied to silica fibers sharpened by selective chemical etching. With this method, we obtained tips with the apex diameter and the foot diameter of the protrusion being less than 10 and 30 nm, respectively, when the gold film was ~120 nm thick.  相似文献   

7.
Liu L  He S 《Applied optics》2005,44(17):3429-3437
A dispersive body-of-revolution finite-difference time-domain method is developed to simulate metal-cladded near-field scanning optical microscope (NSOM) probes. Two types of NSOM probe (aperture and plasmon NSOM probes) are analyzed and designed with this fast method. The influence of the metal-cladding thickness and the excitation mode on the performance of the NSOM probes is studied. We introduce a new scheme of illumination-mode NSOM by employing the plasmon NSOM probe with the TM01 mode excitation. Such a NSOM probe is designed, and we demonstrate its advantages over the conventional aperture NSOM probe by scanning across a metallic object.  相似文献   

8.
Hessler T  Rossi M  Kunz RE  Gale MT 《Applied optics》1998,37(19):4069-4079
The fabrication of continuous-relief diffractive optical elements by direct laser beam writing in photoresist is analyzed. The main limitation and tolerances are identified, and their influence on optical performance is quantified. Fabricated structures show rounded profile steps resulting from the convolution of the desired profile with the writing beam. This leads to a reduction in diffraction efficiency. Optimization techniques are presented to minimize this effect. Scaling the profile depth by a factor of mu > 1 increases the first-order diffraction efficiency for blazed elements. This method is also applied to suppress the zeroth diffraction order in computer-generated holograms. A nonlinear compensation of the exposure data for the Gaussian beam convolution results in an 18% increase of the diffraction efficiency for a blazed grating with a 10-mum period to a value of 79%.  相似文献   

9.
Using exact 3D vectorial simulations of radiation coupling into uncoated dielectric fiber probes, we calculate amplitude transfer functions for conical single-mode fiber tips at the light wavelength of 633 nm. The coupling efficiency of glass fiber tips is determined in a wide range of spatial frequencies of the incident radiation for opening angles varying from 30 degrees to 120 degrees . The resolution in near-field imaging with these tips is considered for field distributions limited in both direct and spatial-frequency space. The characteristics of the transfer functions describing the relation between probed optical fields and near-field images are analyzed in detail. The importance of utilizing a perfectly sharp tip is also examined.  相似文献   

10.
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.  相似文献   

11.
Ryu SY  Choi HY  Na J  Choi WJ  Lee BH 《Applied optics》2008,47(10):1510-1516
We demonstrate a compact all-fiber sampling probe for an optical coherence tomography (OCT) system. By forming a focusing lens directly on the tip of an optical fiber, a compact sampling probe could be implemented. To simultaneously achieve a sufficiently long working distance and a good lateral resolution, we employed a large-mode area photonic crystal fiber (PCF) and a coreless silica fiber (CSF) of the same diameters. A working distance of up to 1270 microm, a 3 dB distance range of 2210 microm, and a transverse resolution of 14.2 microm were achieved with the implemented PCF lensed fiber; these values are comparable to those obtainable with a conventional objective lens having an NA of 0.25 (10 x). The performance of the OCT system equipped with the proposed PCF lensed fiber is presented by showing the OCT images of a rat finger as a biological sample and a pearl as an in-depth sample.  相似文献   

12.
We report on the preparation and interesting electrochemical behavior of carbon nanotube fiber microelectrodes (CNTFM). By combining the advantages of carbon nanotubes (CNT) with those of fiber electrodes, this type of microelectrode differs from CNT modified or CNT containing composite electrodes, because it's made of only CNT without any other components like additives or binders. The active CNT surface is easily regenerated. The performance of CNTFMs has been characterized, among others, by surface modification with phosphomolybdic acid. It is shown that adsorption behavior of these catalyst molecules is highly improved with a controlled orientation of CNT. A better CNT alignment inside the fiber can be achieved by a hot stretching procedure.  相似文献   

13.
Tapered- and straight-core fiber microlenses of hyperbolic shape are studied with the segmented beam propagation method (Se-BPM). This new formulation extends to a large scale the finite-difference time-domain method for calculating propagation of the wave field in guiding systems. It is based on partitioning an entire computational domain into subdomains along the direction of propagation. The Helmholtz equation can be solved directly for each subdomain, and an iterative procedure is used to propagate the field from one subdomain to another. The Se-BPM is compared with other approaches that are commonly used to analyze straight-core fiber microlen devices in the paraxial approximation. We deal mainly with small-spot-size fiber microlenses where this approximation does not apply. We show that the emergent beam is not Gaussian in the far field. Instead of the usual far-field characterization we propose a near-field characterization of the fiber microlens. This is possible with the near-field scanning optical microscopy technique.  相似文献   

14.
Thin film optical filters were designed and fabricated on the end-side of the fiber as the end pumping and out coupler devices to replace the fiber Bragg grating in Yb-doped fiber laser system. It was found that the average transmittance of the end pumping device in the laser pumping wavelength (900-985 nm) is around 95.2%, and the average reflectance in the laser irradiation wavelength (1065-1085 nm) is 99.72%. The average reflectance of the out coupler device is 99.7% (900-1035 nm), and the average transmittance is 20% (1065-1085 nm), respectively.  相似文献   

15.
Gheber LA  Hwang J  Edidin M 《Applied optics》1998,37(16):3574-3581
We describe a near-field scanning optical microscope capable of imaging biological samples in liquid. The microscope uses a straight optical fiber near-field probe and optical shear-force feedback for tip-sample distance regulation. Physical aspects of the design are discussed, and phenomena related to operation in liquid are revealed. Careful calibration of the instrument in air and in liquid is shown, and for the first time to our knowledge, near-field fluorescence images of a biological cell in liquid are presented.  相似文献   

16.
Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip. Then a tip approach is performed on a fragment that remains stuck near the tip extremity. To displace the particle and position it at the very end of the tip, a nanomanipulation is achieved by use of a second tip mounted on piezoelectric scanners. Afterward, the particle size is reduced by focused ion beam milling. These particles exhibit a strong green luminescence where excited in the near infrared by an upconversion mechanism. Images obtained near a metallic edge show a lateral resolution in the 180-200-nm range. Images we obtained by measuring the light scattered by 250-nm holes show a resolution well below 100 nm. This phenomenon can be explained by a local excitation of the particle and by the nonlinear nature of the excitation.  相似文献   

17.
We investigate the effect of defects in the metal-coating layer of a scanning near-field optical microscopy (SNOM) probe on the coupling of polarization modes using rigorous electromagnetic modeling tools. Because of practical limitations, we study an ensemble of simple defects to identify important trends and then extrapolate these results to more realistic structures. We find that a probe with many random defects will produce a small but significant coupling of energy between a linearly polarized input mode and a radial/longitudinal polarization mode, which is known to produce a strongly localized emitted optical field and is desirable for SNOM applications.  相似文献   

18.
Lecompte M  Gao X  Prather DW 《Applied optics》2001,40(32):5921-5927
We present a procedure for the characterization and the linearization of the photoresist response to UV exposure for application to the gray-scale fabrication of diffractive optical elements. A simple and reliable model is presented as part of the characterization procedure. Application to the fabrication of surface-relief diffractive optical elements is presented, and theoretical predictions are shown to agree well with experiments.  相似文献   

19.
We report the scanning near-field optical microscopy (SNOM) characterization of a 4 x 4 multimode interference (MMI) device working at a wavelength of 1.55 microm and designed for astronomical signal recombination. A comprehensive analysis of the mapped propagating field is presented. We compare SNOM measurements with beam-propagation-method simulations and thus are able to determine the MMI structure's refractive-index contrast and show that the measured value is higher than the expected value. Further investigation allows us to demonstrate that good care must be taken with the refractive-index profile used in simulation when one deals with low-index contrast structures. We show evidence that a step-index contrast is not suitable for adequate simulation of our structure and present a model that permits good agreement between measured and simulated propagating fields.  相似文献   

20.
Ma J  Li YS 《Applied optics》1996,35(15):2527-2533
Fiber Raman background spectra of different types of fused-silica fibers are studied and compared. The results show the following: (a) all the background spectra are very similar and comparable with Raman spectra of fused silica, regardless of the difference in the cladding and buffer materials; (b) the overall background intensity increases with the fiber numerical aperture but has no obvious relation with the core diameter. Both experimental evidence and theoretical explanation have been provided for these views. A simple and unfiltered fiber probe for surface-enhanced Raman scattering detection with low fiber Raman background interference is constructed, and the optimum configuration of the probe is suggested and discussed based on the results of the background study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号