首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thousand-fold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox: how to obtain atomic-resolution chemical structure in individual nanoparticles yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering.  相似文献   

2.
Plasmons in graphene can be tuned by using electrostatic gating or chemical doping, and the ability to confine plasmons in very small regions could have applications in optoelectronics, plasmonics and transformation optics. However, little is known about how atomic-scale defects influence the plasmonic properties of graphene. Moreover, the smallest localized plasmon resonance observed in any material to date has been limited to around 10 nm. Here, we show that surface plasmon resonances in graphene can be enhanced locally at the atomic scale. Using electron energy-loss spectrum imaging in an aberration-corrected scanning transmission electron microscope, we find that a single point defect can act as an atomic antenna in the petahertz (10(15) Hz) frequency range, leading to surface plasmon resonances at the subnanometre scale.  相似文献   

3.
Recording methods for making aberration-corrected holographic gratings are greatly simplified by use of a plane multimode deformable mirror (MDM) upon one of the two recording beams. It is shown that MDM compensators easily provide the superposition of many interesting active optics modes, which we have named Clebsch-Zernike modes. When we apply only a uniform loading or no loading at all onto the rear side of the MDM clear aperture, the available Clebsch-Zernike modes are made to belong to a subclass of the Zernike modes that includes the three modes of the third-order aberration theory as well as a well-defined part of the Zernike higher-order modes. Such a recording method is considered to be universal, since it does not require the use of a sophisticated optical system such as a compensator. Active optics 12-arm MDM's in the vase form have been designed from the elasticity theory. The design of six-arm MDM's is currently carried out with theoretical results. As an example of the method, the recording of three holographic gratings of the Hubble Space Telescope Cosmic Origins Spectrograph has been investigated. Substantial improvements in image quality have been found by use of a six-arm MDM as recording compensator. The result is that aberrations of much higher order can simultaneously be corrected so that the residual blur images of the spectra occupy areas approximately 10 (direction of dispersion) x 3 (cross dispersion) = 30 times smaller-also in terms of pixel number-than those obtained by our American colleagues. Therefore the active optics recording method appears to provide substantial gains in resolving power and in sensitivity: (i) For all three gratings the spectral resolution would be increased by a factor of 10, and (ii), in addition, for the two higher dispersion gratings, the limiting magnitude on the sky appears to be increased by a magnitude of approximately 1-1.2.  相似文献   

4.
A real-time VLSI optical centroid processor has been developed as part of a larger Shack-Hartmann wavefront sensor system for applications in adaptive optics. The implementation of the optical centroid detection system was demonstrated successfully using a hardware emulation system. Subsequently, the design has been implemented as a CMOS single-chip solution. This has advantages in terms of speed, power consumption, system size, and cost. The design of the different components of the system will be discussed along with test results of the fabricated device.  相似文献   

5.
用于低能X射线段的掠入射光栅摄谱仪   总被引:1,自引:1,他引:0  
介绍一种新颖的用于研究激光等离子体的掠入射光栅摄谱仪。掠入射光栅摄谱系统由三部分组成:掠入射光栅摄谱仪、四维精密微调装置和一个含光纤传象束、摄象机、监示器和激光准直仪等构成的瞄准系统。文中论述了掠入射光栅摄谱仪的光路设计、机械设计特点和性能实验结果。  相似文献   

6.
Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.  相似文献   

7.
Abstract

Proposed is an imaging type Schwarzschild soft X-ray microscope including a condenser optimized for better imaging properties on the basis of Hopkins's theory. The condenser using grazing incidence reflective optics is found most suitable for a Schwarzschild objective. The modulation transfer function (MTF) for the microscope is calculated and it is shown that the MTF is improved with the light intensity distribution on the condenser pupil.  相似文献   

8.
Onaka T  Miyata T  Kataza H  Okamoto Y 《Applied optics》2000,39(10):1474-1479
A new design for an aberration-corrected concave grating for the spectral region near 10 mum is presented. It was designed for use in the ground-based astronomical medium-resolution (lambda/Dlambda ~ 100) Mid-Infrared Camera and Spectrometer (MICS). It provides a flat focal plane for a wide spectral range (7.5-13.5 mum) with small aberrations, permitting efficient long-slit observations in the mid-infrared region. It permits a simple design of the spectrometer without collimator and camera mirrors, which is quite advantageous for cryogenic instruments. The grating has variable spacing grooves to reduce aberrations. In addition, the grating surface figure is designed to be toroidal and in the direction perpendicular to the grooves, aspherical, to suppress the aberrations further over a wide spectral range. The angle of the grooves is also varied to yield better efficiency near the blaze angle. The grating was fabricated by high-quality ultraprecision machining, which made these features possible. Test observations confirmed that the designed spectral resolution was achieved.  相似文献   

9.
Fang YC  Tsai CM  Macdonald J  Pai YC 《Applied optics》2007,46(13):2401-2410
Two different types of Gauss lens design, which effectively eliminate primary chromatic aberration, are presented using an efficient genetic algorithm (GA). The current GA has to deal with too many targets in optical global optimization so that the performance is not much improved. Generally speaking, achromatic aberrations have a great relationship with variable glass sets for all elements. For optics whose design is roughly convergent, glass sets for optics will play a significant role in axial and lateral color aberration. Therefore better results might be derived from the optimal process of eliminating achromatic aberration, which could be carried out by finding feasible glass sets in advance. As an alternative, we propose a new optimization process by using a GA and involving theories of geometrical optics in order to select the best optical glass combination. Two Gauss-type lens designs are employed in this research. First, a telephoto lens design is sensitive to axial aberration because of its long focal length, and second, a wide-angle Gauss design is complicated by lateral color aberration at the extreme corners because Gauss design is well known not to deal well with wide-angle problems. Without numbers of higher chief rays passing the element, it is difficult to correct lateral color aberration altogether for the Gauss design. The results and conclusions show that the attempts to eliminate primary chromatic aberrations were successful.  相似文献   

10.
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at sub?ngstr?m resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.  相似文献   

11.
Substrates intended for use as extreme-ultraviolet (EUV) optics have extremely stringent requirements in terms of finish. These requirements can dramatically increase the cost and fabrication time, especially when nonconventional shapes, such as toroids, are required. Here we present a spin-on-glass resist process capable of generating superpolished parts from inexpensive substrates. The method has been used to render diamond-turned substrates compatible for use as EUV optics. Toroidal diamond-turned optics with starting rms roughness in the 3.3-3.7 nm range have been smoothed to the 0.4-0.6 nm range. EUV reflectometry characterization of these optics has demonstrated reflectivities of approximately 65%.  相似文献   

12.
Zocchi FE 《Applied optics》2006,45(35):8882-8888
A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.  相似文献   

13.
本文通过建立几何模型 ,讨论了高速转镜相机光束倾斜入口的成象原理。证实了倾斜光束入口在转镜旋转时成象点的扫描轨迹是在以入射点为顶点 ,以成象点和入射点的连线为母线扫出的正圆锥底面的平面内 ,从而把空间光学的复杂设计问题简化成平面上的设计。此原理已用于 PDF- 2 0 0型平面转镜等待式分幅相机的设计  相似文献   

14.
We discuss the use of liquid-crystal phase modulators (LCPM's) both as a repeatable disturbance test source and as an adaptive optics corrector. LCPM's have the potential to induce controlled, repeatable, dynamic aberrations into optical systems at low cost, low complexity, and high flexibility. Because they are programmable and can be operated as transmissive elements, they can easily be inserted into the optical path of an adaptive optics system and used to generate a disturbance test source. When used as wave-front correctors they act as a piston-only segmented mirror and have a number of advantages. These include low operating power requirements, relatively low cost, and compact size. Laboratory experiments with a Meadowlark LCPM are presented. We first describe use of the LCPM as a repeatable disturbance generator for testing adaptive optics systems. We then describe a closed-loop adaptive optics system using the LCPM as the wave-front corrector. The adaptive optics system includes a Shack-Hartmann wave-front sensor operated with a zonal control algorithm.  相似文献   

15.
Enhancing the imaging power of microscopy to identify all chemical types of atom, from low- to high-atomic-number elements,would significantly contribute for a direct determination of material structures. Electron microscopes have successfully provided images of heavy-atom positions, particularly by the annular dark-field method, but detection of light atoms was difficult owing to their weak scattering power. Recent developments of aberration-correction electron optics have significantly advanced the microscope performance, enabling identification of individual light atoms such as oxygen, nitrogen, carbon, boron and lithium. However, the lightest hydrogen atom has not yet been observed directly, except in the specific condition of hydrogen adatoms on a graphene membrane. Here we show the first direct imaging of the hydrogen atom in a crystalline solid YH(2), based on a classic 'hollow-cone' illumination theory combined with state-of-the-art scanning transmission electronmicroscopy. The optimized hollow-cone condition derived from the aberration-corrected microscope parameters confirms that the information transfer can be extended to 22.5 nm(-1), which corresponds to a spatial resolution of about 44.4 pm. These experimental conditions can be readily realized with the annular bright-field imaging in scanning transmission electron microscopy according to reciprocity, revealing successfully the hydrogen-atom columns as dark dots, as anticipated from phase contrast of a weak-phase object.  相似文献   

16.
We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.  相似文献   

17.
Solar Cell light trapping beyond the ray optic limit   总被引:3,自引:0,他引:3  
In 1982, Yablonovitch proposed a thermodynamic limit on light trapping within homogeneous semiconductor slabs, which implied a minimum thickness needed to fully absorb the solar spectrum. However, this limit is valid for geometrical optics but not for a new generation of subwavelength solar absorbers such as ultrathin or inhomogeneously structured cells, wire-based cells, photonic crystal-based cells, and plasmonic cells. Here we show that the key to exceeding the conventional ray optic or so-called ergodic light trapping limit is in designing an elevated local density of optical states (LDOS) for the absorber. Moreover, for any semiconductor we show that it is always possible to exceed the ray optic light trapping limit and use these principles to design a number of new solar absorbers with the key feature of having an elevated LDOS within the absorbing region of the device, opening new avenues for solar cell design and cost reduction.  相似文献   

18.
The depth-from-focus-defocus approach to 3D reconstruction is based on the fact that objects closer to or farther from the object in focus appear blurred, and the amount of blur increases with the distance from the object in focus. An important characteristic of any depth-from-defocus system is the depth reconstruction accuracy. Several 3D reconstruction algorithms have been proposed, and the influence of image noise and image spectrum on the system accuracy has been studied. However, so far the effect of optics on the accuracy has not been fully explored. Here, we derive an expression estimating the system accuracy as a function of its optical parameters. It turns out that optics plays a major role in the accuracy, and tenfold increase of the lens focal length, and the aperture can increase the overall accuracy by a factor of more than 1000. The derived expression allows one to review several results, revealing that the accuracy is defined primarily by the optics. We also provide guidelines for the design of new depth-from-defocus systems in compliance with predefined specifications by choosing the appropriate optics.  相似文献   

19.
Yoon Y 《Applied optics》2000,39(16):2551-2558
Since focal diffractive optics have been introduced, designing them has flourished, particularly as the manufacturing technology has developed to meet the performance requirements. My purpose is to introduce to hybrid diffractive-refractive optical systems not only the design procedure but also the optical and the mechanical aspects of optical tolerancing. A comparison is made with equivalent conventional (purely refractive) systems in the visible wave band (rather than the infrared wave band where there are many published designs) to seek advantages and disadvantages that systems with diffractive optics bring. The results of tolerancing comparisons show that for small-field systems the introduction of diffractive components has a powerful desensitizing effect, whereas for a wide-field anastigmatic system that has been investigated the desensitization effect of the inclusion of diffractive surfaces is less marked. These results come mainly from the fact that an achromatizing diffractive surface has little focal power, whereas an achromatizing refractive component has to have a large focal power.  相似文献   

20.
Onaka T 《Applied optics》1995,34(4):659-666
A mechanically ruled aberration-corrected concave grating was developed for use in the low-resolution mid-infrared spectrometer aboard the cryogenically cooled Infrared Telescope in Space. The design and the performance testing of the grating are reported. The spectrometer requires a wide spectral range (4.5-11.7 μm) and a wide field of view (8 × 8 arcmin) with a low wavelength resolution (Δλ ≤ 0.3 μm). The aberration-corrected concave grating provides a flat focal plane with a small aberration in the spatial direction compared with those caused by the finite size of the entrance slit. It also permits a simple design for the spectrometer, which is advantageous for applications in space cryogenic instruments. The measurements of the wavelength resolution and the spatial resolution are shown to be in good agreement with the predicted performance. The diffraction efficiency of the grating is more than 80% at the blaze wavelength (6 μm) and fairly high (>30%) over the entire wavelength range in question. The grating produces polarization of less than 10% for λ < 6.4 μm and of 10-20% for 6.7 μm <λ 9.7 μm. These results indicate the potential applicability of this type of grating to the wide-field IR spectroscopic observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号