首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以煤焦油基沥青为原料,在420~450℃的范围内热解制备中间相沥青,用所制得的沥青在6~8MPa的压力下升温发泡,保温一段时间,然后再经过碳化和石墨化制得一种性能优良的导热材料--碳泡沫,其导热系数最高可以达到110W/(m·K).讨论了沥青中间相含量、发泡时的压力、保温时间、升温速率对泡沫导热性能的影响:随着中间相沥青含量的增加,所制备的碳泡沫的导热系数明显提高,中间相由0%提高到100%时,导热系数由77.5W/(m·K)上升到110W/(m·K);发泡时保温时间的影响相对于成型压力更为明显,保温时间从1h提高到4h,导热系数会由85 W/(m·K)上升到100W/(m·K);发泡的压力对导热系数的影响不是很明显.  相似文献   

2.
通过原位热缩聚、模压成型、高温烧结制备了中间相炭微球/碳纳米管复合块体材料,采用热重分析和恒温氧化方法研究了碳纳米管对中间相炭微球抗氧化性能的影响。结果表明:原位添加适当比例的碳纳米管可以增强中间相炭微球的抗氧化性能。随着碳纳米管含量的增加,碳化处理后的炭材料微晶层间距变小,抗氧化性能增强;当添加5%碳纳米管时,样品初始失重温度提高了40℃,氧化10小时后质量损失仅为8.55%;但过多的碳纳米管会使微球粒径分布变宽,球形度变差,导致块体材料气孔率增加,降低了其抗氧化性能。  相似文献   

3.
香蕉冻干过程中有效导热系数实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为实现对冻干工艺的精准热控制,提高冻干产品品质,本文以香蕉为研究对象,利用稳态热流法研究了在真空环境下压强(10、30、50 Pa)和干燥温度(-20、-30℃)对香蕉切块整个冻干过程中有效导热系数的影响。借助微CT扫描,观察分析了香蕉内部的升华过程,深入探讨了冻干过程孔隙率和有效导热系数的关系。结果表明:当压强由10 Pa增至50 Pa,对应的有效导热系数由0.036 W/(m·K)增至0.072 W/(m·K);升华干燥温度由-30℃增至-20℃,对应的有效导热系数由0.084 W/(m·K)降至0.058 W/(m·K);微CT在冻干过程(30 Pa,-20℃)中,升华界面逐渐向切块中心移动,孔隙率由最初的0.059增至0.252,对应的有效导热系数由0.695 W/(m·K)减小至0.123 W/(m·K)。  相似文献   

4.
以中温煤沥青为原料,松香为添加剂,通过热缩聚合法制备中间相炭微球。采用FT-IR、SEM、偏光显微镜等对所得产物进行表征,研究了松香对中间相炭微球制备的影响。研究表明松香的加入能有效限制沥青的过度聚合,不仅促进中间相炭微球的成核和生长,而且在很大程度上防止中间相炭微球的融并;当松香添加量为10%(质量分数)时,改性煤沥青经450℃热解2h可制备出球形度好、粒径均匀的中间相炭微球,其平均粒径为15.3μm,收率达44.1%。  相似文献   

5.
锂离子电池用中间相炭微球的低温表面修饰   总被引:1,自引:0,他引:1  
采用CoCl2对中间相炭微球进行低温表面修饰,进行了表征和性能测量,并研究对其性能的影响.结果表明,低温热处理中间相炭微球仍以低温炭结构为主,但是微球表面的碳微晶尺寸比内部的大;低温表面热处理能够明显提高中间相炭微球的可逆容量,在不降低充电容量的情况下将首次库仑效率从52.2%提高到87.2%,并改善了循环性能.低温表面修饰使中间炭微球表面碳结构的有序化程度增强,有效地缓解了碳表面的不可逆电化学反应.  相似文献   

6.
以AR中间相沥青为原料,采用中间相沥青自发泡法在初始发泡压力为3MPa、发泡温度在390~450℃范围内制备了4种炭泡沫。利用SEM观察了炭泡沫的孔隙结构,并测定了其体积密度、抗压强度和导热系数,考察了发泡温度对炭泡沫结构及性能的影响。结果表明,采用较低的发泡温度(430℃)可以消除大的孔隙缺陷;当发泡温度为410℃时,炭泡沫导热系数最高,为0.256W/(m·K)。  相似文献   

7.
选择粒径30μm和120μm的氮化硼微球(GBN)作为导热填料,通过超支化环氧树脂(HPEP)与GBN之间的π-π相互作用得到了超支化聚合物修饰的氮化硼微球(HPEP-GBN),通过共混制备了具有不同复配比例的环氧树脂复合材料(HPEP-GBN/EP)。调整小粒径填料的质量分数(Xs)研究了不同氮化硼微球的复配比例对复合材料流变行为和导热性能的影响,进一步分析了填料的形状和超支化聚合物的表面修饰对复合材料性能的影响。结果表明,当Xs=0.4时,HPEP-GBN/EP复合材料的黏度最低,具有比GBN/EP复合材料更优异的加工性能和导热性能。体系的填料质量分数可以达到80%,此时导热系数达到了5.28W/(m·K),是纯环氧树脂的31.06倍。此外,HPEP-GBN/EP复合材料还具有比GBN/EP更优异的力学性能和热稳定性、更低的介电损耗和热膨胀系数。  相似文献   

8.
利用瞬态电热技术(TET)和电流热退火对聚丙烯腈基碳纤维(PAN-CF)进行原位测量,基于数值模拟方法分析实验现象。研究了退火温度对PAN-CF导热性能的影响,分析了电流热退火条件下PAN-CF的石墨化与导热性能之间的关系。在PAN-CF的退火区域,导热系数随退火温度的升高而增大,最高平均导热系数为16.27 W/(m·K),是原始平均导热系数的3.45倍。电流退火存在沿纤维轴向温度分布不均匀的现象,样品在大约中点位置燃断。燃断点的温度和导热系数最大,分别为3 867 K和96.74 W/(m·K)。其中,断点导热系数比样品的平均导热系数高出6.51倍。研究表明,经电流退火后PAN-CF的石墨化程度升高,C原子的杂化效应促使材料结构缺陷密度降低,最终导致PAN-CF的导热性能提高。  相似文献   

9.
以中温煤沥青和碳纳米管为原料进行热缩聚反应,制备出含有碳纳米管的中间相炭微球,采用扫描电子显微镜(SEM)、激光粒度仪和X射线衍射(XRD)等分析手段对其形貌及结构进行了表征。研究了添加碳纳米管对中间相炭微球形貌、粒径、产率、微晶结构及热缩聚工艺的影响。结果表明添加碳纳米管能够促进小球成核,阻止小球的融并长大,使炭微球的粒径减小,分布均匀,但过多的碳纳米管会导致球形度变差及中间相沥青产率的降低;碳纳米管的存在使石墨片层尺寸减小,石墨化程度降低;碳纳米管经过酸煮处理后,可以获得球形度更好、含有更大比例碳纳米管的中间相炭微球。  相似文献   

10.
为研究同一制备方法下石墨烯质量分数对不同聚合物导热性能和热稳定性的影响,通过熔融共混法制备了石墨烯/聚酰胺(GE/PA6)、石墨烯/聚丙烯(GE/PP)、石墨烯/高密度聚乙烯(GE/HDPE)3种聚合物复合材料。结果表明,石墨烯能有效提高3种聚合物导热性能,当填充石墨烯质量分数达到10%时,PA6导热系数从0.32 W/(m·K)提升至1.30 W/(m·K);GE/PP导热系数从0.37 W/(m·K)提升至1.15 W/(m·K)、GE/HDPE导热系数从0.62 W/(m·K)提升至1.13 W/(m·K)。对制备的石墨烯聚合物复合材料进行热重分析。将纯聚合物与石墨烯质量分数1%,5%,10%的石墨烯聚合物复合材料对比,PA6的热稳定性逐渐提升,PP、HDPE的热稳定性先降低后升高。  相似文献   

11.
采用"T"形法测量了温度100K~400K范围内单根沥青基炭纤维的热导率.结果表明,在300K以下,由于边界散射的影响,炭纤维热导率随着温度升高而增大,350K左右渐趋于饱和,对应热导率约为800W/(in·K),400K附近热导率又增大至920W/(in·K).在不改变接触点的前提下,通过测量同一根纤维小同长度对应的热导率,估计了炭纤维与热线节点处的接触热阻,并讨论了不同温度下辐射对热导率测量的影响,最后得到热导率的测量不确定度在±13%以内.  相似文献   

12.
通过原料及配方的创新,以硅酸铝纤维、玻化微珠等为原料制备了一种新型多腔孔陶瓷复合保温材料。研究了材料的导热性能和显微结构。结果表明:材料导热系数低,热面温度200℃时导热系数仅为0.050 W/(m·K),热面温度600℃时导热系数为0.084 W/(m·K);材料内部结构疏松,存在多级配的孔隙结构,孔隙尺寸在微米级以下。利用马弗炉进行保温性能测试,保温材料内表面温度600℃,厚度仅为139mm时,稳态时外表面温度即可低于46℃,散热损失仅为158 W/m~2,远远低于标准规定的最大散热损失266 W/m~2。将材料制成1cm厚度的块材时,材料能产生较大弯曲而不损坏,有利于对电厂高温管道进行包覆。  相似文献   

13.
以抛光砖废渣粉为主要原料,采用复合发泡法制备高温发泡陶瓷。通过正交试验确定了发泡剂的复合比,研究了复合发泡机制及烧成制度对发泡体孔结构和性能的影响。结果表明,多种发泡剂协同作用,拓宽了单一发泡剂的放气温度区间,利于形成均匀封闭的气孔结构。按炭黑、碳酸钙、氧化铁、碳化硅质量比1∶3∶1.5∶1(四者占反应体系的总质量分数为6.5%)与瓷粉等混合制坯,程序升温至1 160℃下保温100min,可制得闭气孔率为62.94%,气孔直径为1.2~1.9mm,体积密度为369kg/m~3,吸水率为0.44%,导热系数为0.079 W/(m·K)的闭孔泡沫陶瓷。  相似文献   

14.
吴其胜  陈宝锐  诸华军  闵治安 《材料导报》2018,32(10):1701-1706
采用热压成型工艺制备了石墨烯-水泥基复合材料,研究了硅烷偶联剂和行星球磨时间对复合材料性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变化红外光谱(FTIR)和氮吸附比表面积测定仪等对复合材料进行了微观分析。结果显示:当偶联剂和石墨烯掺量为1%时,复合材料导热系数和抗压强度分别达到3.132 3 W/(m·K)和54.9 MPa,相较于未使用偶联剂处理的样品,分别提高了42.07%和28.87%;球磨能提高石墨烯在复合材料中的分散性,当球磨时间为0.5h、石墨烯掺量为1.5%、偶联剂含量为1%时,复合材料导热系数和抗压强度分别为3.687 2W/(m·K)和57.4MPa;微观形貌和孔结构分析表明,采用热压成型工艺制备的复合材料孔隙率更低,结构更为致密。  相似文献   

15.
利用中间相沥青纤维中沥青分子的高度择优取向和适度的热塑性热压制备高导热块体炭材料. 对比研究了经不同氧化处理的带形及圆形中间相沥青纤维热压所得炭材料的传导性及力学性能. 结果表明: 相对圆形纤维来说, 由于带形中间相纤维具有更高的纤维轴向取向度和纤维之间更高的接触面积, 故其热压所得材料具有更高的密度和传导性. 经260℃氧化的带形纤维热压所得炭材料的密度、抗弯强度、电阻率及热导率分别达到了2.18g·cm-3、118.4MPa、1.13μΩm和717W/m·K.  相似文献   

16.
采用调制式差示扫描量热技术(MDSC)实现了碳纤维/环氧预浸料固化过程中的热导率(垂直纤维方向和平行纤维方向)测定。在实验基础上建立了预浸料固化过程中的热导率二元二次函数模型, 确定了热导率随温度及固化度变化的函数关系。结果表明: T800/环氧预浸料沿纤维方向的热导率为1.15~1.40 W/(m·K), 垂直纤维方向热导率为0.85~1.25 W/(m·K)。在相同温度下, 预浸料的热导率值随固化度的增大而减小; 在相同固化度条件下, 预浸料的热导率值随温度的升高而增大。验证结果表明, 拟合所得热导率二元二次函数关系用于预浸料固化过程的数值模拟时, 将提高参数的准确性。  相似文献   

17.
采用热压烧结法成功制备SiC_p/Cu复合材料。采用溶胶-凝胶工艺在SiC颗粒表面制备Mo涂层,研究Mo界面阻挡层对复合材料热物理性能的影响。结果表明:过氧钼酸溶胶-凝胶体系能够在SiC颗粒表面包覆连续性、均匀性较好的MoO_3涂层,最佳工艺配比为SiC∶MoO_3=5∶1(质量比)、过氧化氢∶乙醇=1∶1(体积比),SiC表面丙酮和氢氟酸预清洗处理有利于MoO_3涂层的沉积生长。MoO_3在540℃第一步氢气还原后转变为MoO_2,MoO_2在940℃第二步氢气还原后完全转变为Mo,Mo涂层包覆致密完整。热压烧结SiC_p/Cu复合材料微观组织致密均匀,且相比原始SiC颗粒增强的SiC_p/Cu,经溶胶-凝胶法界面改性处理的SiC_p/Cu复合材料热导率明显提高,SiC体积分数约为50%时,SiC_p/Cu复合材料热导率达到214.16W·m~(-1)·K~(-1)。  相似文献   

18.
介绍了定型隔热制品导热系数(水流量平板法)不确定度的要素构成及各类不确定度分量的计算方法,并计算了各不确定度分量的自由度,得出合成不确定度和扩展不确定度。得到不确定度报告为:导热系数检测结果A=0.197W/(m·K),扩展不确定度U=0.005W/(m·K),包含因子k=2。  相似文献   

19.
在一维稳态热传导模型的基础上,设计了一套用于测量聚合物薄膜纵向热导系数的实验装置,并利用Comsol软件对该测量装置进行数值模拟并优化设计。同时利用本文设计的实验装置,测量得到了不同温度下聚酰亚胺(PI)膜、聚四氟乙烯(PTFE)膜以及混合纤维素酯(MCE)膜的热导系数。在35℃~60℃的温度范围内热导系数测量值分别维持在0.21 W/(m.K),0.26 W/(m.K),0.13 W/(m.K)左右,标准不确定度在9.5%以下。测量结果与参考值相符,验证了实验装置的测试精度。  相似文献   

20.
谢金  杨伟军 《功能材料》2020,(4):4148-4152,4159
将不同含量(0.5%,1.0%,1.5%(质量分数))的碳纤维掺入到硫铝酸盐水泥基体中,制备了碳纤维增强水泥基复合材料。通过SEM、阿基米德排水测试法、四探针法等手段,研究了碳纤维含量对增强水泥基复合材料断面结构、抗弯强度、孔隙率、电导率、热导率和塞贝克系数的影响,并模拟太阳辐射进行了能量收集实验。结果表明,碳纤维均匀地分布在水泥基体中形成网格结构,碳纤维与水泥基体有很强的结合力。当碳纤维含量由0.5%(质量分数)增加到1.5%(质量分数)时,水泥基复合材料的抗压强度由71.36 MPa增加到106.51 MPa,增长了49.26%;孔隙率由0.8%增加到2.0%,增长了150.0%;电导率由0.0214 S/m增加到0.2408 S/m,增长了1025%;热导率由0.261 W/(m·K)减小到0.210 W/(m·K),减少了19.54%;塞贝克系数迅速增大,最大为1.22×10^4μV/K。当碳纤维含量为1.5%(质量分数)时,厚度为20 mm的水泥基复合材料每1 m^2可输出5~6μW的功率;在400 min辐照下,试样表面温度迅速达到70℃左右,1 m^2水泥基复合材料面板上收集到的能量高达8.1×10^-6 J。由此可知,碳纤维含量的增加,极大地提高了碳纤维增强水泥基复合材料的热电性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号