首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray photoelectron spectra of Te 3d5/2 and Mo 3d5/2 core electrons of TeO2-MoO3 provided an evidence for reduction of Te to the metallic state even in the presence of oxygen in the feed, while the component Mo was rather stable under reductive environment, in the vaporphase oxidation of ethyl lactate at 300 °C. Lattice oxygen was supplied to make up for the oxygen-deficit at the surface, and the catalyst should be used under oxidative, oxygen-rich conditions.  相似文献   

2.
A series of low loading gold supported ceria/alumina catalysts have been prepared by the deposition–precipitation method, varying the pH of the synthesis. The catalysts were characterised by means of XRD, TEM, SBET, XRF and UV–Vis techniques, and their catalytic activity towards CO oxidation in the absence and in presence of water in the stream, were tested. It has been found that in this low loading gold catalysts, where the metallic particles are far away one from another and the oxygen transportation is not the limiting step of the reaction, the electronic properties of the ceria phase and the structure of the metal-support perimeter more than the diameter of the gold nanoparticles is the determinant factor in the catalytic performances of the solid.  相似文献   

3.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

4.
The stability of Au supported catalysts for the water–gas shift reaction was studied. Two types of continuous flow experiments were performed, i.e. temperature-programmed and long-term isothermal stability test. The highest initial rate was obtained for catalysts used without any calcination or other high-temperature treatment. The continuous flow experiments showed that all Au/Fe2O3 catalysts deactivated under water–gas shift conditions. The deactivation trend occurred independently on the Au loading, the method of preparation, calcination or high-temperature treatment. The various causes on the deactivation, i.e. the formation of carbon-containing species, the change of Au particles or changes of the support were investigated in terms of DRIFTS coupled with MS, TGA, TEM, N2 physisorption, ICP, and XRD. Even though stable carbonate and carbonyl surface species were found on the spent catalysts, the quantity of these species indicated that they are not the main cause of the deactivation. Furthermore, the agglomeration of the Au particles was not severe and was not observed for all Au catalysts. The deactivation of Au/Fe2O3 was mainly caused by the change of the support. A significant reduction of the surface area of the support is taking place during the water–gas shift reaction as a function of time on stream. This decrease of the surface area can almost solely explain the decrease on the catalytic activity.  相似文献   

5.
Dawody  Jazaer  Tönnies  Inga  Fridell  Erik  Skoglundh  Magnus 《Topics in Catalysis》2007,42(1-4):183-187
Transient experiments were performed to study sulfur deactivation and regeneration of Pt/BaO/Al2O3 and Pt/SrO/Al2O3 NO x storage catalysts. It was found that the strontium-based catalysts are more easily regenerated than the barium-based catalysts and that a higher fraction of the NO x storage sites are regenerated when H2 is used in combination with CO2 compared to H2 only.  相似文献   

6.
Both flat and corrugated wire mesh sheets were coated with aluminum powder by using electrophoretic deposition (EPD) method. Controlled thermal sintering of coated samples yielded uniform porous aluminum layer with a thickness of 100 μm that was attached firmly on the wire meshes. Subsequent controlled calcination formed a finite thickness of Al2O3 layer on the outer surface of each deposited aluminum particles, which resulted in the formation of Al2O3/Al double-layered composite particles that were attached firmly on the wire surface to form a certain thickness of porous layer. A rectangular-shaped wire-mesh honeycomb (WMH) module with triangular-shaped channels was manufactured by packing alternately the flat sheet and corrugated sheet of the Al2O3/Al-coated wire meshes. This WMH was further coated with V2O5-MoO3-WO3 catalyst by wash-coating method to be applied for the selective catalytic reduction (SCR) of NO with NH3. With an optimized catalyst loading of 16 wt%, WMH catalyst module shows more than 90% NO conversion at 240 °C and almost complete NO conversion at temperatures higher than 300 °C at GHSV 5,000 h−1. When compared with conventional ceramic honeycomb catalyst, WMH catalyst gives NO conversion higher by 20% due to reduced mass transfer resistance by the existence of three dimensional opening holes in WMH.  相似文献   

7.
This work reports the development of a facile, one-step microwave heating method for the synthesis of graphene-supported Pd1Pt3 (Pd core/Pt shell) electrocatalysts. The structure and composition of the synthesized nanocomposites were characterized via transmission electron microscopy and atomic force microscopy as well as energy-dispersive X-ray, X-ray powder diffraction, FTIR, and Raman spectroscopies. Using voltammetry, the electrocatalytic characteristics of the graphene-supported Pd1Pt3 nanostructures were evaluated for the oxidation of methanol as a model reaction. The results show that the introduction of graphene increases the electrochemically active surface area of the Pd1Pt3 nanostructures. As compared to the unsupported Pd1Pt3 electrocatalyst, the graphene-supported Pd1Pt3 electrocatalyst exhibited 80% enhancement of the electrocatalytic specific mass current for the oxidation of methanol. This method may serve as a general, facile approach for the synthesis of graphene-supported bimetallic PtM electrocatalysts with increased utilization of the Pt metal, which is expected to have promising applications in fuel cells.  相似文献   

8.
Te-free and Te-containing Mo–V–Nb mixed oxide catalysts were diluted with several metal oxides (SiO2, γ-Al2O3, α-Al2O3, Nb2O5, or ZrO2), characterized, and tested in the oxidation of ethane and propane. Bulk and diluted Mo–V–Nb–Te catalysts exhibited high selectivity to ethylene (up to 96%) at ethane conversions <10%, whereas the corresponding Te-free catalysts exhibited lower selectivity to ethylene. The selectivity to ethylene decreased with the ethane conversion, with this effect depending strongly on the diluter and the catalyst composition. For propane oxidation, the presence of diluter exerted a negative effect on catalytic performance (decreasing the formation of acrylic acid), and α-Al2O3 can be considered only a relatively efficient diluter. The higher or lower interaction between diluter and active-phase precursors, promoting or hindering an unfavorable formation of the active and selective crystalline phase [i.e., Te2M20O57 (M = Mo, V, and Nb)], determines the catalytic performance of these materials.  相似文献   

9.
Framework Ti-substituted and Ti-grafted MCM-41 mesoporous material has been prepared by direct hydrothermal synthesis and a post-synthesis grafting method. The materials have been tested as catalysts for cyclohexene oxidation with aqueous H2O2 and tert-butyl hydroperoxide (TBHP). With aqueous H2O2 in methanol, the major products were cyclohexene diol and its methyl ethers. No cyclohexene oxide was produced. Titanium leaching was a serious problem, and the catalyst lost its activity irreversibly after only one cycle of reaction. With TBHP, the selectivity for cyclohexene oxide was near 100%, titanium leaching was negligible, and the catalyst could be repeatedly used after regeneration without suffering significant activity loss. However, the reaction rate was lower than when H2O2 was used. Framework substituted material and catalysts prepared by Ti-grafting onto a MCM-41 support behaved similar, but the Ti-grafted MCM-41 is somewhat more active. The turnover frequency (TOF) per mole of Ti decreases with an increase of Ti content in the catalyst. This is caused by a reduced Ti dispersion within the silica matrix. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

11.
A series of SnO2-supported MoO3 catalysts were prepared by the metal oxide vapor synthesis (MOVS) technique. ESR studies indicated the presence of highly dispersed Mo5+ species in both octahedral and tetrahedral coordination environments at all the loadings studied. At the highest MoO3 loading of 12 wt%, the formation of MoO3 microcrystallites was indicated from the lower intensity of the ESR signal. Raman studies also showed the presence of well dispersed surface molybdate species up to 4.4 wt% MoO3 loading, and the peaks corresponding to microcrystallites of molybdena were observed at 12 wt% MoO3 loading. The ethanol partial oxidation activities of the catalysts increased with increase in MoO3 loading and the catalyst with 4.4 wt% molybdena content showed the highest activity; all the MOVS catalysts showed 100% selectivity to acetaldehyde at low conversions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
For characterization of the surface structure of metallic copper formed on the support, temperature programmed oxidation (TPO) with N2O was carried out over various Cu/ZnO catalysts. Four peaks of the N2 formation (, , and ) were observed at 223, 400, 545 and 600 K in the TPO runs. The average copper crystallite size estimated from the sum of the amount of - and -peaks agreed fairly with those determined by X-ray diffraction and transmission electron microscopy. It was concluded that - and -peaks resulted from the oxidation of metallic copper atoms on the steps, corners and/ or defect sites, and on the flat sites of the surface of copper crystallites, respectively, while - and -peaks resulted from the bulk oxidation of copper.  相似文献   

13.
Co-Mo催化剂上甲苯气相选择氧化制苯甲醛的研究   总被引:4,自引:0,他引:4  
制备一系列的负载型Co-Mo-O/Al2O3-USY催化剂,并用于甲苯的气相选择氧化制苯甲醛。结果表明:在空速6000h-1,空气/甲苯摩尔比100,MoO3负载量为10.00%(质量分数),在480℃反应,得到甲苯转化率43.76%,苯甲醛选择性25.97%,苯甲醛收率为11.37%的结果。并用X射线衍射、X射线光电子能谱等测试手段,对催化剂进行结构表征。  相似文献   

14.
The effects of MgO promoter on the physicochemical properties and catalytic performance of Ni/Al2O3 catalysts for the partial oxidation of methane to syngas were studied by means of BET, XRD, H2-TPR, TEM and performance evaluation. It was found that the MgO promoter benefited from the uniformity of nickel species in the catalysts, inhibited the formation of NiAl2O4 spinel and improved the interaction between nickel species and support. These results were related to the formation of NiO-MgO solid solution and MgAl2O4 spinel. Moreover, for the catalysts with a proper amount of MgO promoter, the nickel dispersiveness was enhanced, therefore making their catalytic performance in methane partial oxidation improved. However, the excessive MgO promoter exerted a negative effect on the catalytic performance. Meanwhile, the basicity of MgO promoted the reversed water-gas shift reaction, which led to an increase in CO selectivity and a decrease in H2 selectivity. The suitable content of MgO promoter in Ni/Al2O3 catalyst was ∼7 wt-%. Translated from Journal of Fuel Chemistry and Technology, 2006, 34(4): 450–455 [译自: 燃料化学学报]  相似文献   

15.
Without use of any surfactant or oxidant, a series of Co3O4 catalysts have been prepared from cobalt nitrate aqueous solution via a very simple liquid-precipitation method with ammonium acid carbonate followed by calcination at various temperatures. The catalytic performance of the Co3O4 for CO oxidation has been studied with a continuous flowing laboratory microreactor system. The results show that the CO conversion of all the samples can reach 100% at ambient temperature. The catalyst calcined at 300 °C is able to maintain its activity for CO complete oxidation more than 500 min at 25 °C and about 240 min even at −78 °C. High reaction temperature results in a high catalytic stability, while the catalytic stability decreases with further increasing the reaction temperature. Characterizations with X-ray powder diffraction and transmission electron microscopy suggest that all the samples exist as a pure Co3O4 phase with the spinel structure, the samples are apt to aggregate and the specific surface area gradually decreases with increasing the calcination temperature, which directly leads to the decrease of catalytic stability. Furthermore, the amount of active oxygen species measured by CO titration experiments appears to be critical for catalytic performance.  相似文献   

16.
Nicosia  D.  Elsener  M.  Kröcher  O.  Jansohn  P. 《Topics in Catalysis》2007,42(1-4):333-336
Topics in Catalysis - The influence of the combustion products of different lubrication oil additives and impurities in fuel or urea solution on the activity and selectivity of V2O5/WO3-TiO2...  相似文献   

17.
The deep oxidation of dimethylamine (DMA) was studied over Pt/Al2O3 catalysts with small (1 nm) and large (7.8–15.5 nm) Pt crystallite sizes. The turnover frequency (TOF) was higher for the large than for the small Pt crystallites, indicating that the reaction is structure sensitive. Two kinetic models were used to interpret the obtained results, i.e., the Mars van Krevelen and a mechanism based on the adsorption of oxygen and adsorption of dimethylamine on different active sites were employed. Both models showed that the activation energy for the oxygen chemisorption rate constant (ko) decreased with increasing of Pt crystallite size and that the activation energy for the surface reaction rate constant (ki) was independent of the Pt crystallite size. The structure sensitivity may be explained by differences in the reactivity of the oxygen adsorbed on these Pt crystallites.The Mars van Krevelen model fits the TOF values very well at concentrations of DMA higher than 1500 ppm, while in the lower concentrations region, the model under predicts the experimental data. The model based on the adsorption of oxygen and DMA on different active sites fits the experimental data quite well over the whole temperature and concentration range. The fitted values of the Henry adsorption constant are independent of the Pt crystallite size.  相似文献   

18.
EXAFS has been used to follow in situ the structural evolution of a chlorinated and non-chlorinated Pt/Al2O3 catalyst during reduction in the temperature range of 300–500 °C. Smaller metal clusters are formed from the hydrogen reduction of the chlorinated catalyst, in contrast to the larger cluster formed from the non-chlorinated one. At 460 °C, the total hydrogen pressure was raised to 5 atm. and n-heptane was injected over the samples. EXAFS measurements at the Pt edge were carried out while hydrocarbon conversion was monitored with a gas Chromatograph. We observe the rapid formation of a carbon-platinum bond. This is unmodified while turnover rates and selectivities indicate evidence for deactivation. From this structural information supplied by EXAFS, correlated with the data obtained from gas chromatography, we find that our results are consistent with a model proposed by others where deactivation is due to the build-up of a multilayer of carbon.  相似文献   

19.
In this study, the design of Pt-Co-Ce/Al2O3 catalyst for the low temperature CO oxidation in hydrogen streams was modeled using artificial neural networks. The effects of five design parameters, namely Pt wt.%, Co wt.%, Ce wt.%, calcination temperature and calcination time, on CO conversion were investigated by modeling the experimental data obtained in our laboratory for 30 catalysts. Although 30 points data set can be considered as small for the neural network modeling, the results were quite satisfactory apparently due to the fact that the experimental data generated with response surface method were well balanced over the experimental region and it was very suitable for neural network modeling. The success of neural network modeling was more apparent when the number of data points was increased to 120 by using the time on stream as another input parameter. It was then concluded that the neural network modeling can be very helpful to improve the experimental works in catalyst design and it may be combined with the statistical experimental design techniques so that the successful models can be constructed using relatively small number of data points.  相似文献   

20.
Au/Co3O4 catalysts with different morphologies (nanorods, nanopolyhedra and nanocubes) were successfully synthesized and evaluated for ethylene complete oxidation. We found that support morphology has a significant effect on catalytic activity, which is related to the exposed planes of different morphological Co3O4. HRTEM revealed the Co3O4-nanorods predominantly exposes {110} planes, while the dominant exposed planes of Co3O4-nanopolyhedra and -nanocubes are {011} and {001} planes, respectively. Compared with {011} and {001} planes, {110} planes exhibit the maximum amount of oxygen vacancies, which play a major role in ethylene oxidation. Therefore, Au/Co3O4-nanorods exhibits extraordinary catalytic activity, yielding 93.7% ethylene conversion at 0 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号