共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
提出一种基于自适应混沌梯度下降的单目标耦合优化算法 .它采用变步长梯度下降法得到某个局部优化值 ,通过规则来判断其为局部极小值 ,然后利用一个由小到大变化的自适应尺度混沌遍历算法来获得一个更优值来代替局部极小值以跳出局部极小状态 ,全局优化值可以通过这种反复迭代来获得 .仿真结果表明 ,该算法能充分发挥梯度法寻优的快速性和混沌法寻优的全局搜索能力 ,有效地跳出局部极小 ,并快速找到最优值 相似文献
4.
5.
《计算机应用与软件》2017,(2)
针对拟态物理学算法优化算法后期搜索精度差、陷入局部最优的问题,提出一种融合共轭梯度法和混沌扰动的改进拟态物理学算法。该算法是在拟态物理学算法后期难以精细搜寻时,采用高精度解析算法——共轭梯度法替代拟态物理学算法进行局部搜寻;在整个算法中加入混沌扰动,避免算法"早熟"。仿真结果表明该算法收敛速度快、精度高,在跳出局部最优解上有明显优势。因此该算法适应于高维的复杂函数的寻优。 相似文献
6.
《计算机科学与探索》2016,(6):891-900
教与学优化算法通过模拟自然班的教与学行为实现复杂问题的求解,已经得到较为广泛的应用。为了克服该算法容易早熟,解精度低的弱点,提出了一种改进的混合混沌共轭梯度法教与学优化算法。改进算法应用Chebyshev混沌映射初始化种群,以提高初始种群对解空间的覆盖。为了保持种群多样性,引入动态学习因子,使学生个体能够在早期主要向教师学习,并逐渐提高个人知识对其进化的影响比例。每次迭代后,教师个体将执行共轭梯度搜索。种群内适应度较差的学生个体如果长时间状态难以改变,则基于反向学习和高斯学习进行二次学习优化。最后在多个典型测试函数上的实验表明,改进算法对比相关算法具有较佳的全局收敛性,解精度较高,适用于求解较高维的函数优化问题。 相似文献
7.
8.
9.
为了解决彩色图像多阈值分割中计算时间长、分割精度低的问题,在电磁场优化算法(Electromagnetic Field Optimization,EFO)的基础上引入一种混沌策略用于算法初始化中,提出混沌电磁场优化算法(Chaotic Electromagnetic Field Optimization,CEFO)对图像的最佳阈值向量进行搜索。将其与另外5种优化算法进行对比,采用PSNR、MSSIM和FSIM 3个图像质量评价指标和算法运行时间(CPU Time)对6种分割算法进行分析比较。结果表明,CEFO具有收敛速度快、分割精度高的优势,能够胜任多阈值彩色图像分割的工程任务。 相似文献
10.
对神经网络中的LMBP(Levenberg-Marquardt BP)算法的收敛速度慢进行分析,针对矩阵JTJ+µI求逆过程运算量过大而造成收敛速度慢的缺陷,根据无约束优化理论,提出一种基于共轭梯度方法的改进LMBP网络学习算法,利用求解大规模线性方程组的共轭梯度方法,避免了烦琐的求逆过程,降低了计算复杂度,加快了网络的收敛速度,通过Matlab仿真,比较了算法的收敛速度,证明了方法的有效性。 相似文献
11.
This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of scaled memoryless Broyden–Fletcher–Goldfarb–Shanno preconditioned conjugate gradient method with the nonmonotone technique. An attractive property of the proposed method is that the search direction always provides sufficient descent step at each iteration. This property is independent of the line search used. Under appropriate assumptions, the method is proven to possess global convergence for nonconvex smooth functions, and R-linear convergence for strongly convex functions. Preliminary numerical results and related comparisons show the efficiency of the proposed method in practical computation. 相似文献
12.
Masoud Fatemi 《Optimization methods & software》2017,32(5):1095-1112
We propose a new optimization problem which combines the good features of the classical conjugate gradient method using some penalty parameter, and then, solve it to introduce a new scaled conjugate gradient method for solving unconstrained problems. The method reduces to the classical conjugate gradient algorithm under common assumptions, and inherits its good properties. We prove the global convergence of the method using suitable conditions. Numerical results show that the new method is efficient and robust. 相似文献
13.
自适应变尺度混沌免疫优化算法及其应用 总被引:4,自引:1,他引:4
结合混沌优化算法与免疫算法的特点,提出了一种采用折叠次数无限的自映射X=sin(2/x)产生混沌变量的自适应变尺度混沌免疫优化算法.该算法通过自适应变尺度方法不断调整优化变量的搜索空间,同时采用最大循环次数作为控制指标,既保证了寻优的准确性,又保证了算法的快速性.应用该算法对3个测试函数进行优化计算得到了比较满意的结果.将此算法应用于移动Ad Hoc网络入侵检测时的仿真实验结果表明,自适应变尺度混沌免疫优化算法能有效地减少对训练样本的依赖,同时减少噪音数据对入侵检测系统性能的影响,适用于移动自组网络对于入侵检测系统高检测率、高抗噪能力和低计算延迟的要求. 相似文献
14.
采用变尺度混沌优化方法代替梯度下降法融入BP神经网络,在优化搜索过程中不断缩小搜索空间,克服了标准BP算法易陷入局部极小的缺点,能有效地寻找到BP神经网络权值的全局最优值。此外,进一步提出变尺度混沌优化与梯度下降法有机结合的算法,能有效缩短单一的变尺度混沌优化BP算法的训练时间。仿真结果表明,改进的BP神经网络具有实现简单、寻优性强和优化效率高等特点。 相似文献
15.
在基本人工鱼群算法中引入共轭梯度法,得到改进的人工鱼群算法。基本人工鱼群算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善则进行觅食算子,由于觅食算子具有很大的随机性,这样不能保证每次更新都是有价值的,本文用共轭梯度法代替此时的觅食算子,也就是如果人工鱼利用聚群算子和追尾算子更新,如果没有得到改善,利用共轭梯度法对该条鱼进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值试验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。 相似文献
16.
分析了差分进化算法多种变异方式的特点以及每种变异方式所适应的搜索状态,建立了一条能够让种群根据自身的搜索环境来动态选择变异方式的反馈回路,使个体能够自学习、自调节地高效搜索。在每一代的最优个体邻域内,采用共轭梯度法确定最佳的共轭搜索方向,向量能够在最优解邻域内进行细致的局部搜索。根据混合算法的子代更新形式,从理论上证明了种群能够以概率1的方式收敛到全局最优解。与其它进化算法的对比实验结果表明,本文的差分进化算法有效提高了benchmark函数的最优值精度,加快了收敛速度。在弹簧设计问题中,利用改进的差分进化混合算法得到了较好的结构参数。 相似文献
17.
为了快速得到高质量的重建图像,提出了对称共轭梯度法成像算法,大大缩减了迭代次数,同时,将ERT物理模型进行规范化和Tikhonov正则化处理,进而将QR分解的思想引入ERT方程的求解中,提出基于QR分解的对称共轭梯度算法,实现了单步图像重建.理论分析表明,该算法具有良好的收敛性.通过典型流型的仿真实验,证明了该算法可以... 相似文献
18.
Yunlong Cheng Qiong Mou Xianbing Pan Shengwei Yao 《Optimization methods & software》2016,31(3):577-590
In this paper, a DL-type conjugate gradient method is presented. The given method is a modification of the Dai–Liao conjugate gradient method. It can also be considered as a modified LS conjugate gradient method. For general objective functions, the proposed method possesses the sufficient descent condition under the Wolfe line search and is globally convergent. Numerical comparisons show that the proposed algorithm slightly outperforms the PRP+ and CG-descent gradient algorithms as well as the Barzilai–Borwein gradient algorithm. 相似文献
19.
Jinbao Jian Qian Chen Xianzhen Jiang Youfang Zeng Jianghua Yin 《Optimization methods & software》2017,32(3):503-515
The spectral conjugate gradient methods, with simple construction and nice numerical performance, are a kind of effective methods for solving large-scale unconstrained optimization problems. In this paper, based on quasi-Newton direction and quasi-Newton condition, and motivated by the idea of spectral conjugate gradient method as well as Dai-Kou's selecting technique for conjugate parameter [SIAM J. Optim. 23 (2013), pp. 296–320], a new approach for generating spectral parameters is presented, where a new double-truncating technique, which can ensure both the sufficient descent property of the search directions and the bounded property of the sequence of spectral parameters, is introduced. Then a new associated spectral conjugate gradient method for large-scale unconstrained optimization is proposed. Under either the strong Wolfe line search or the generalized Wolfe line search, the proposed method is always globally convergent. Finally, a large number of comparison numerical experiments on large-scale instances from one thousand to two million variables are reported. The numerical results show that the proposed method is more promising. 相似文献