共查询到20条相似文献,搜索用时 46 毫秒
1.
一种基于混沌领域搜索的自适应遗传算法* 总被引:5,自引:3,他引:2
提出一种基于混沌领域搜索的自适应混沌遗传算法,该方法在遗传进化的过程根据种群相对多样性对每代个体引入混沌领域方法搜索有效基因,并有效地结合遗传算法善于全局优化和混沌局部搜索能力强等特点。计算结果表明,该算法可以显著提高计算效率,具有较大的实用价值。 相似文献
2.
自适应遗传算法(AGA)是一种有效的全局优化概率搜索算法.把混沌优化算法引入到AGA中,提出了一种结合混沌搜索的自适应遗传算法(AGACCS).该算法保持了AGA的所有特点,进一步改善了AGA的全局寻优能力并有效防止局部收敛现象,提高了算法的收敛速度和计算精度.仿真函数结果表明,该算法的性能优于AGA. 相似文献
3.
针对遗传算法局部搜索能力差和早熟收敛的问题,提出一种基于混沌局部搜索的双种群遗传算法.将2个种群分别作为探测种群和开发种群,按不同交叉概率和变异概率进化.种群每进化一代即对其最优解做混沌局部搜索,若搜索到更优解,则取代原最优解,直至搜索到预设的混沌次数,同时2个种群之间每进化10代进行一次移民操作.在6个Benchma... 相似文献
4.
提出了一种自适应策略的混沌局部搜索遗传算法(ACLSGA),它是遗传算法中每一代的所有个体经过一次遗传操作之后得到一个最佳个体,通过自适应策略决定是否在最佳个体附近进行混沌局部搜索。4个基本的测试函数优化结果表明:ACLSGA比具有精英保留选择机制的实数编码的遗传算法(RGA)的全局搜索能力强,收敛速度快。 相似文献
5.
自适应遗传算法优化神经网络的入侵检测研究 总被引:3,自引:0,他引:3
入侵检测是一种动态的安全防护技术,能够对网络内部、外部攻击进行防御.基于神经网络的入侵检测是常见的智能入侵检测方法.针对神经网络算法易陷入局部极值和简单遗传算法收敛速度慢的问题,提出了一种将神经网络和遗传算法相结合,用遗传算法优化神经网络权值,在遗传算法优化神经网络时采用自适应遗传操作.将自适应遗传算法优化神经网络算法应用于入侵检测系统中,实验结果表明,该方法能够有效的提高系统的检测率,降低误报率和漏报率. 相似文献
6.
7.
8.
针对数字电路中多故障测试生成较难的问题,本文提出了基于混沌搜索的数字电路多故障测试生成算法。该算法先把多故障转换成为单故障,再用神经网络的方法对单故障电路构造故障的约束网络,最后用混沌搜索方法求解故障约束网络能量函数的最小值点获得原电路中多故障的测试矢量。在一些国际标准电路上的实验结果表明了本算法的可行性。 相似文献
9.
研究优化网络信息安全问题.传统的加密技术存在一些安全系统可部署性较差,加密技术自身造成的安全漏洞容易导致效率下降、可靠性较低等安全和稳定性隐患,依据网络业务加密特点自适应调整交叉概率Pc和变异概率Pm值,提出了一种自适应遗传算法数字加密技术,算法基于信息混沌迭代模型,建立混沌数字映射8制,最后在加密过程中将明文分组为数据流,依据自适应遗传算法,每次加密一个数据包,其加密方式由数字混沌映射函数确定.仿真结果表明,该加密技术具有自适应优化全局、计算复杂度低和可靠性高等优点. 相似文献
10.
11.
12.
13.
混沌遗传算法及其在函数优化中的应用 总被引:11,自引:0,他引:11
将混沌优化和遗传算法结合起来,提出了混沌遗传算法(CGA,Chaos Genetic Algorithm),并将其应用于函数优化问题的求解。通过在种群进化的不同阶段引入混沌优化操作,大大提升了遗传算法的整体性能。实验结果表明,与标准遗传算法(SGA)相比,该算法能更有效地求得全局最优解,具有更快的收敛速度。 相似文献
14.
一种新型暂态混沌神经网络及其在函数优化中的应用 总被引:1,自引:0,他引:1
本文提出了一种新颖的混沌神经元模型,其激励函数由Gauss函数和Sigmoid函数组成,分又图和Lyapunov指数的计算袁明其具有复杂的混沌动力学特性。在此基础上构成一种暂态混沌神经网络,将大范围的倍周期倒分叉过程的混沌搜索和最优解邻域内的类似Hopfield网络的梯度搜索相结合,应用于函数优化计算问题的求解。实验证明,它具有较
较强的全局寻优能力和较快的收敛速度。 相似文献
较强的全局寻优能力和较快的收敛速度。 相似文献
15.
将禁忌搜索和遗传算法相结合,给出了一种求解优化问题的混合策略--禁忌遗传优化算法.该算法一方面为禁忌搜索找到了较好的初始点,减少了调用禁忌搜索的次数,另一方面也可以克服遗传算法爬山能力差的缺点,从而加快了收敛速度,提高了解的质量.通过实例验证了该优化算法的有效性和可靠性,并将其用于网络拥塞控制的研究中,为进一步实施网络拥塞控制提供了一种有效的途径. 相似文献
16.
17.
遗传算法在神经网络优化中的应用 总被引:8,自引:4,他引:8
把遗传算法和神经网络结合起来,形成以遗传算法与神经网络相结合的进化神经网络。介绍了遗传算法的基本原理。讨论了用遗传算法优化网络结构和基于遗传算法的神经网络权值优化问题。并通过实验仿真将该算法与BP算法进行比较,从而验证了该算法的可行性与有效性。 相似文献
18.
针对遗传算法在局部搜索能力方面的缺陷,提出了一种基于扩散算子的遗产算法(简称扩散遗产算法)。该算法中包含的扩散算子是变异算子,其主要作用是在遗传搜索中进行局部搜索。用扩散遗传算法和实数编码遗传算法分别训练用于解XOR问题的神经网络,对比结果表明,论文提出的算法兼具强的全局搜索能力和局部搜索能力,因此,该算法可以不借助其它局部搜索算法而单独作为神经网络训练算法,从而简化训练算法,提高训练效率。该算法对提高遗传算法搜索效率和求解精度具有重要的意义。 相似文献
19.
基于伪并行混合遗传算法的神经网络优化 总被引:1,自引:1,他引:0
在分析并行多物种遗传算法应用于神经网络拓扑结构的设计和学习之后,提出一种伪并行遗传(PPGA-MBP)混合算法,结合改进的BP算法对多层前馈神经网络的拓扑结构进行优化。算法编码采用基于实数的层次混合方式,允许两个不同结构的网络个体交叉生成有效子个体。利用该算法对N-Parity问题进行了实验仿真,并对算法中评价函数各部分系数和种群规模对算法的影响进行了分析。实验证明取得了明显的优化效果,提高了神经网络的自适应能力和泛化能力,具有全局快速收敛的性能。 相似文献
20.
基于实数编码的广义遗传算法及其在优化问题中的应用 总被引:18,自引:0,他引:18
对遗传算法中一些具有代表性的算法作了简要分析和评论,在此基础上将实数编码引入广义遗传算法,给出了一个算法框架,设计了相应的遗传操作方法,并将该算法应用于函数优化问题和神经网络训练问题,数值算例表明,该方法具有全局优化功能和快速收敛特性,对于求解复杂优化问题具有广泛的适用性。 相似文献