首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A TTL-compatible 64K static RAM with CMOS-bipolar circuitry has been developed using a 1.2-/spl mu/m MoSi gate n-well CMOS-bipolar technology. Address access time is typically 28 ns, with 225 mW active power and 100 nW standby power. A CMOS six-transistor memory cell is used. The cell size is 18/spl times/20 /spl mu/m, and the chip size is 5.95/spl times/6.84 mm. The n-p-n transistors are used in the sense amplifiers, voltage regulators, and level clamping circuits. The bipolar sense amplifiers reduce the detectable bit line swing, thus improving the worst-case bit line delay time and the sensing delay time. In order to reduce the word line delay, the MoSi layer, which has 5 /spl Omega//sheet resistivity, was used for the gate material. The n-well CMOS process is based on a scaled CMOS process, and collector-isolated n-p-n transistors and CMOS are integrated simultaneously without adding any extra process steps and without causing any degradation of CMOS characteristics. The n-p-n transistor has a 2-GHz cutoff frequency at 1 mA collector current.  相似文献   

2.
A high-speed CMOS/SOS 4K word/spl times/1 bit static RAM is described. The RAM features a MoSi/SUB 2/ gate CMOS/SOS technology with 2 /spl mu/m gate length and 500 /spl Aring/ thick gate oxide. Performance advantage of SOS over bulk is discussed for the scaled-down MOS LSI with 1-2 /spl mu/m gate. A standard 6-transistor CMOS cell and a two-stage sense amplifier scheme are utilized. In spite of the rather conservative 3.5 /spl mu/m design rule except for the 2 /spl mu/m gate length, the cell size of 36/spl times/36 /spl mu/m, the die size of 3.11/spl times/4.07 mm, and the typical read access and cycle time of 18 ns are achieved. The active and standby power dissipation are 200 mW and 50 /spl mu/W, respectively.  相似文献   

3.
A fast, low-power 32K/spl times/8-bit CMOS static RAM with a high-resistive polyload 4-transistor cell has been developed utilizing a dynamic double word line (DDWL) scheme. This scheme combines an automatic power down circuitry and double word line structure. The DDWL, together with bit line and sense line equilibration, reduces the core area delay time and operating power to about 1/2 and 1/15 that of a conventional device, respectively. A newly developed fault-tolerant circuitry improves fabrication yield without degrading the access time. As for a fabrication process, an advanced 1.2-/spl mu/m p-well CMOS technology is developed to realize the ULSI RAM, integrating 1,600,000 elements on a 6.68/spl times/8.86 mm/SUP 2/ chip. The RAM offers, typically, 46 ns access time, 10 mW operating power and 30 /spl mu/W standby power.  相似文献   

4.
A 64 kbit fully static MOS RAM which contains about 402500 elements on the chip area of 5.44/spl times/5.80 mm has been designed. The memory cell is a basic cross-coupled flip-flop with four n-MOSFETs and two polysilicon load resistors. The memory cell size is decreased to 16/spl times/19 /spl mu/m (304 /spl mu/m/SUP 2/) by using advanced n-MOS technology with double-level polysilicon films and photolithography of 2 /spl mu/m dimensions. By applying n-well CMOS technology fabricated on a high-resistivity p-type silicon substrate to peripheral circuits of the RAM, high performance characteristics with high speed access times and low power dissipation are obtained. The RAM is designed for single 5 V operation. Address and chip select access times are typically 80 ns. Power dissipation in the active and standby mode is typically 300 and 75 mW, respectively.  相似文献   

5.
Low-temperature (77K, 4.2K) operation is proposed for bulk CMOS devices to be used in superfast VLSI applications. Symmetrical variation of the parameters of both n-channel and p-channel MOSFETs with respect to the temperature and latch-up immunity makes CMOS a very promising device technology at low temperatures. To demonstrate the performance advantage of circuit operation at low temperatures, inverter chains and 16-kb static random-access memories (RAMs) with 2-/spl mu/m gate length were measured. Average propagation delay for an inverter chain has been reduced to 175 ps (77K) and 104 ps (4.2K) from 296 ps at 300K without sacrificing power dissipation. The power-delay product is less 1 fJ, which is the smallest for silicon devices reported to date. The chip select-access time of the RAM has been reduced to 14.3 ns (77K) from 24 ns (300K).  相似文献   

6.
A fully static 8K word by 8 bit CMOS RAM, with a six-transistor CMOS cell structure to achieve an extremely low standby power of less than 50 nW has been developed. A 2 /spl mu/m, double polysilicon CMOS process was utilized to realize a 19/spl times/22 /spl mu/m cell size. Redundance technology with polysilicon laser fuses was also developed for improving fabrication yield with relatively large chip size, i.e. 5.92/spl times/7.49 mm. In addition, for reducing operational power dissipation while maintaining fully static operation from outside on the chip, an internally clocked low-power circuit technology using row address transition detectors was employed, which results in only 15 mW operational power at 1 MHz by cutting off all DC current paths. The RAM offers an 80 ns address access time.  相似文献   

7.
A 256-bit/spl times/4-bit static RAM working on a supply voltage down to 1.2 V is described. A serial interface for the address and the data with a 4-bit bus reduces the pincount of the RAM to only 8. Special design techniques to reach the design goal-very low power at a reasonable circuit speed-are discussed in detail. The device is fabricated in a low power silicon gate CMOS process. An operating power of 500 /spl mu/W/MHz and a standby power of less than 1 /spl mu/W at 1.5 V supply voltage was achieved. With this serial interface a cycle time of 1 /spl mu/s at 1.5 V was measured.  相似文献   

8.
This paper reports a GaAs 1K static RAM, fabricated using tungsten silicide gate self-aligned technology with full ion implantation. With 2-/spl mu/m gate length, an address access time of 3.6 ns and a minimum write-enable pulse width of 1.6 ns were achieved with a power dissipation of 68 mW. The access time compares favorably to those of currently reported high-speed Si bipolar memories, and the greatly decreased power dissipation is better by one order of magnitude. An address access time of 0.88 ns can be achieved by shortening the gate length to 1 /spl mu/m and adopting a 2-/spl mu/m design rule in the layout.  相似文献   

9.
A 2K/spl times/8-bit static MOS RAM with a new memory cell structure has been developed. The memory cell consists of six devices including four MOSFETs and two memory load resistors. Two load resistors are fabricated in the second-level polysilicon films over the polysilicon gate MOSFET used as the driver. Thus the memory cell area is determined only by the area of four MOSFETs. By applying the new cell structure and photolithography technology of 3 /spl mu/m dimensions, the cell area of 23/spl times/27 /spl mu/m and the chip area of 3.75/spl times/4.19 mm have been realized. The RAM is nonclocked and single 5 V operation. Access time of about 150 ns is obtained at a supply current of 120 mA.  相似文献   

10.
A 1-Mb words/spl times/1-bit CMOS dynamic RAM fabricated with an advanced n-well CMOS technology is described. More than 2.2 million devices are integrated on a 62.5 mm/SUP 2/ silicon chip by utilizing an n-channel memory cell of triple-level poly Si structure and a 1.2-/spl mu/m feature size VLSI process. Novel CMOS circuit design techniques such as the half V/SUB cc/ bitline precharge scheme are successfully applied to realize the excellent performance combination of high-speed operation and low-power dissipation. The CMOS peripheral circuitry is capable of the new operating functions, fast page mode, or static column mode with metal mask options. The typical RAS access time is 56 ns, the active current is 30 mA at a 190-ns cycle time, and the standby current is 0.2 mA.  相似文献   

11.
A fully asynchronous 8K word/spl times/8 bit CMOS static RAM with high resistive load cells is described. For fabricating the RAM, an advanced double polysilicon 2 /spl mu/m CMOS technology has been developed. Internally clocked dynamic peripheral circuits with address transition detectors are implemented to achieve high speed and low power simultaneously. A new CMOS fault-tolerant circuit technology is also introduced for improving fabrication yield without sacrificing operating speed or standby power. The resulting cell size and die size are 15/spl times/19 /spl mu/m and 4.87/spl times/7.22 mm, respectively. The RAM offers, typically, 70 ns access time, 15 mW operating power, and 10 /spl mu/W standby power.  相似文献   

12.
A Hi-CMOSII static RAM with 8K word by 8 bit organization has been developed. The RAM is fabricated using double polysilicon technology and p- and n-channel transistors having a typical gate polysilicon length of 2 /spl mu/m. The device was realized using low-power high-speed-oriented circuit design and a new redundancy circuit that utilizes laser diffusion programmable devices. The new RAM has an address access time of 65 ns, operating power dissipation of 200 mW, and standby dissipation of 10 /spl mu/W.  相似文献   

13.
Discusses high density CMOS/SOS technology used to develop a fully static 4096-bit RAM with a five-transistor storage cell. Selection of a five-transistor memory cell has reduced the access to the flip-flop storage element to a single word line transistor and bit line. The word line transistor must be able to prevent data altering currents from entering the memory cell at all times except for the write operation. The write operation is enhanced by reducing the bias voltage across the memory cell, thereby making the current needed to alter the cell smaller. Through the use of a 5 /spl mu/m design rule, the memory cell occupies 2913 /spl mu/m/SUP 2/. The 4096-bit static CMOS/SOS RAM contains 22553 transistors in 20 mm/SUP 2/. Organised as 1024 4-bit words, the RAM has a read cycle time of 350 ns and standby power dissipation of 50 /spl mu/W at V/SUB cc/=5 V and temperature of 27/spl deg/C.  相似文献   

14.
A 1-kb ECL RAM with an address access time of 0.85 ns is described. This excellent performance is achieved by combining super self-aligned technology (SST) with 1-/spl mu/m design rules and high-speed circuit design. SST provides a narrow emitter stripe width of 0.5 /spl mu/m and a high cutoff frequency of 12.4 GHz at V/SUB CE/=3 V. A two-level metallization process is used. The minimum metallization pitches are 3 /spl mu/m in the first layer and 6 /spl mu/m in the second one. The chip size is 2.5/spl times/2.5 mm/SUP 2/ and the power dissipation is 950 mW. This RAM is promising for use in super computers and/or high-speed digital systems.  相似文献   

15.
A 128 K/spl times/8-b CMOS SRAM with TTL input/output levels and a typical address access time of 35 ns is described. A novel data transfer circuit with dual threshold level is utilized to obtain improved noise immunity. A divided-word-line architecture and an automatic power reduction function are utilized to achieve a low operational power of 10 mW at 1 MHz, and 100 mW at 10 MHz. A novel fabrication technology, including improved LOCOS and highly stable polysilicon loads, was introduced to achieve a compact memory cell which measures 6.4/spl times/11.5 /spl mu/m/SUP 2/. Typical standby current is 2 /spl mu/A. The RAM was fabricated with 1.0-/spl mu/m design rules, double-level polysilicon, and double-level aluminum CMOS technology. The chip size of the RAM is 8/spl times/13.65 mm/SUP 2/.  相似文献   

16.
The relationship between sensitivity and other factors in the sense circuit of a single transistor MOS RAM has been investigated by computer simulation. An expression for sensitivity of the sense circuit has been derived. It suggests key points to increase the sensitivity of the sense circuit. A new sense circuit that defects a signal less than /spl plusmn/30 mV and has low power capability 50 /spl mu/W/circuit is realized by following the suggestions. The high performance of the proposed sense circuit has been verified through the fabrication of a 1K MOS RAM. Fine pattern technology, such as 2-/spl mu/m minimum pattern width and spacing and 500-/spl Aring/ gate oxide thickness, has been adopted. The threshold voltage of the MOS transistor is 0.8 V and dc supplies are 7 V and /spl plusmn/2 V. This 1K RAM has characteristics of 80-ns access time, 150-ns cycle time, and 30-mW power dissipation.  相似文献   

17.
A 32K words by 8-bit static RAM fabricated with a CMOS technology is described. The key feature of the RAM is a tri-level word-line, in which an automatic power down by a pulsed word-line in the READ cycle and a power saving by a middle-level word-line in the WRITE cycle are combined. This circuit technique minimizes bitline swing, shortens the precharging time, and depresses the transient current. An improved address transition detection circuit reduces the chip select access time. The sense amplifier uses internally synchronized signals for improved operation. The RAM has a typical access time of 45 ns with an active power dissipation of 7 mW. The peak transient current is less than 40 mA. A double-level polysilicon technology with a 1.3-/spl mu/m design rule allowed layout of the NMOS memory cell in an area of 116.0 /spl mu/m/SUP 2/ and the die in 49.6 mm/SUP 2/.  相似文献   

18.
New input and output schematics and optimum design for cell and array are proposed, and applied to a 256/spl times/4 bit CMOS static RAM. Simplified decoder circuit with effective decoder control circuit has a high speed and a wide timing margin. Simple sense amplifier and compact output circuit bring higher speed and reduction in pattern area. Using p-channel transfer gate for memory cell and array, the switching speed and operational stability are much improved. The device is fabricated by 5 /spl mu/m layout rule Si-gate CMOS technology. An 80 ns access time and 100 ns minimum cycle time are acquired at 5 V supply. Power dissipation is less than 7.5 mW at 1 MHz operation.  相似文献   

19.
Complementary MOS silicon-on-sapphire inverters fabricated using silicon-gate technology and 5-/spl mu/m channel-length devices has achieved nanosecond propagation delays and picojoule dynamic power-x delay products. In addition to high switching speed and low dynamic power, inverters with low leakage currents and therefore low quiescent power have been obtained. Two complex CMOS/SOS memories that realize the performance attributes of the individual inverters have been fabricated. An aluminium-gate 256-bit fully decoded static random-access memory features a typical access time of 50 ns at 10 V with a power dissipation of 0.4 /spl mu/W/bit (quiescent) and 10 /spl mu/W/bit (dynamic). The access time at 5 V is typically 95 ns. A silicon-gate 256-bit dynamic shift register features operation at clock signals of 200 MHz at 10 V and 75 MHz at 5 V. The dynamic power dissipation at 50 MHz and 5 V is typically 90 /spl mu/W/bit.  相似文献   

20.
An experimental general purpose 5-V 1-Mb dynamic RAM has been designed for increased performance, high density, and enhanced reliability. The array consists of a one-device overlapped I/O cell with a metal bitline architecture. The cell measures 4.1 /spl mu/m by 8.8 /spl mu/m, which yields a chip size of 5.5 mm by 10.5 mm with an array to chip area ratio of 65.5%. The chip was designed in a double-poly single-metal NMOS technology with selected 1-/spl mu/m levels and an average feature size of 1.5 /spl mu/m. Key design features include a fast page mode cycle with minimum column precharge delay and improved protection for short error rate using a boosted word-line after sense amplifier set scheme. The CAS access time is 40 ns and the cycle is 65 ns at 4.5 V and 85/spl deg/C. The RAS access time is 80 ns and the cycle is 160 ns at 4.5 V and 85/spl deg/C with a typical active power of 625 mW. The chip is usable as a X1, X2, or X4 with the use of block select inputs and the selected package option. The package options include a 500-mil/SUP 2/ pin grid array module with 23 pins, and a 22 pin or 26 pin 300-mil surface solder plastic package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号