首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对图像自动标注中底层视觉特征与高层语义之间的语义鸿沟问题,在传统字典学习的基础上,提出一种基于多标签判别字典学习的图像自动标注方法。首先,为每幅图像提取多种类型特征,将多种特征组合作为字典学习输入特征空间的输入信息;然后,设计一个标签一致性正则化项,将原始样本的标签信息融入到初始的输入特征数据中,结合标签一致性判别字典和标签一致性正则化项进行字典学习;最后,通过得到的字典和稀疏编码矩阵求解标签稀疏编向量,实现未知图像的语义标注。在Corel 5K数据集上测试其标注性能,所提标注方法平均查准率和平均查全率分别可达到35%和48%;与传统的稀疏编码方法(MSC)相比,分别提高了10个百分点和16个百分点;与距离约束稀疏/组稀疏编码方法(DCSC/DCGSC)相比,分别提高了3个百分点和14个百分点。实验结果表明,所提方法能够较好地预测未知图像的语义信息,与当前几种流行的图像标注方法进行比较,所提方法具有较好的标注性能。  相似文献   

3.
为了在图像底层特征与高层语义之间建立关系,提高图像自动标注的精确度,结合基于图学习的方法和基于分类的标注算法,提出了基于连续预测的半监督学习图像语义标注的方法,并对该方法的复杂度进行分析。该方法利用标签数据提供的信息和标签事例与无标签事例之间的关系,根据邻接点(事例)属于同一个类的事实,构建K邻近图。用一个基于图的分类器,通过核函数有效地计算邻接信息。在建立图的基础上,把经过划分后的样本节点集通过基于连续预测的多标签半监督学习方法进行标签传递。实验表明,提出的算法在图像标注中的标注词的平均查准率、平均查全率方面有显著的提高。  相似文献   

4.
分析了图像检索系统的研究现状,指出了出现语义鸿沟的原因在于系统中缺乏对于实体相互关系的描述,提出了一个四层的图像语义模型,并在此基础上给出了基于常识库和图像实体库的图像描述和检索模型。以图像的颜色、纹理、形状等特征来构造实体的描述信息,并以常识库信息来分析图像场景中的实体构成和关系,从而获得对图像语义信息的识别和理解。  相似文献   

5.
针对有效利用图像底层视觉特征和图像语义特征进行图像标注,提出一种改进的AP(Affinity Propagation)聚类标注模型。首先采用半监督距离测度学习算法,融合图像语义信息,训练得到新的距离测度。然后使用新的距离测度对每一类图像进行AP聚类,生成各类图像的聚类中心,计算待标注图像到各类图像聚类中心的平均距离,确定待标注图像类别。最后计算待标注图像到类内各个聚类中心的距离,确定待标注图像类内类别,统计该类别下图像的标注词,作为待标注图像的标注词。在Corel5K和NUS-WIDE数据集上进行了实验,经验证,该方法有效提高了标注精度。  相似文献   

6.
针对图像标注数据集中存在的标注对象比例不一致和标签分布不平衡问题,提出基于特征融合和代价敏感学习的图像标注方法.在卷积神经网络中加入特征融合层,改进VGG16原有的网络结构,特征融合层结合注意力机制,对网络中不同卷积层提取的多尺度特征进行选择性融合,提升对不同尺度对象的标注精度;将代价敏感学习融入损失函数对网络模型进行训练,提升网络的泛化性能.实验结果表明,该方法能提升图像标注的准确率,增加对低频标签的召回率.  相似文献   

7.
汪鹏  张奥帆  王利琴  董永峰 《计算机应用》2018,38(11):3199-3203
针对图像标注数据集标签分布不平衡问题,提出了基于标签平滑策略的多标签平滑单元(MLSU)。MLSU在网络模型训练过程中自动平滑数据集中的高频标签,使网络适当提升了低频标签的输出值,从而提升了低频标注词的标注性能。为解决图像标注数据集样本数量不足造成网络过拟合的问题,提出了基于迁移学习的卷积神经网络(CNN)模型。首先利用互联网上的大型公共图像数据集对深度网络进行预训练,然后利用目标数据集对网络参数进行微调,构建了一个多标签平滑卷积神经网络模型(CNN-MLSU)。分别在Corel5K和IAPR TC-12图像标注数据集上进行实验,在Corel5K数据集上,CNN-MLSU较卷积神经网络回归方法(CNN-R)的平均准确率与平均召回率分别提升了5个百分点和8个百分点;在IAPR TC-12数据集上,CNN-MLSU较两场K最邻近模型(2PKNN_ML)的平均召回率提升了6个百分点。实验结果表明,基于迁移学习的CNN-MLSU方法能有效地预防网络过拟合,同时提升了低频词的标注效果。  相似文献   

8.
传统的单视角方法对来自不同场景不同形式的多视角样本难以获得较好的分类性能,因此多视角学习成为近年来的热门研究课题并被广泛研究.在多视角学习中,可能存在这样一种特殊现象,即来自不同视角相同类的样本间的差异比来自同一视角不同类的样本间的差异大,这给多视角学习带来很大挑战,并导致多视角学习效果变差.鉴于此,首先利用Parze...  相似文献   

9.
In this paper, the learning-based single image super-resolution (SR) is regarded as a problem of space structure learning. We propose a new SR method that identifies a space from the low-resolution (LR) image space that best preserves the structure of the high-resolution (HR) image space. The inference between the two structure-consistent spaces proves to be accurate and predicts HR image patches with higher quality. An effective iterative algorithm is also proposed to find the near-optimal solution to the model, which can be easily implemented in parallel computing. Extensive experiments are performed to show the effectiveness of the proposed algorithm.  相似文献   

10.
基于Web的医学多媒体教学系统   总被引:2,自引:0,他引:2  
针对传统医学教育中存在的问题,探讨了利用现代医学网络多媒体教学系统开展网络教学的新思路,从而达到锻炼医学生临床思维能力的效果.对医学网络多媒体教学软件的结构、功能及实现进行了讨论,并提出了未来网络多媒体教学系统的智能化和虚拟化发展方向.  相似文献   

11.
Dear editor, The increasing awareness of the potential value hidden in data has resulted in many data mining studies being con-ducted.In the domain of software ...  相似文献   

12.
Image annotation has been an active research topic in recent years due to its potential impact on both image understanding and web image search. In this paper, we propose a graph learning framework for image annotation. First, the image-based graph learning is performed to obtain the candidate annotations for each image. In order to capture the complex distribution of image data, we propose a Nearest Spanning Chain (NSC) method to construct the image-based graph, whose edge-weights are derived from the chain-wise statistical information instead of the traditional pairwise similarities. Second, the word-based graph learning is developed to refine the relationships between images and words to get final annotations for each image. To enrich the representation of the word-based graph, we design two types of word correlations based on web search results besides the word co-occurrence in the training set. The effectiveness of the proposed solution is demonstrated from the experiments on the Corel dataset and a web image dataset.  相似文献   

13.
目前的图像垃圾邮件过滤技术,大都采用国际上通用的垃圾图像数据集作为训练集,与中国国内图像垃圾邮件的图像特点不一致,图像数据缺乏实时更新,且分类器单一,过滤效果难以保证。针对该问题,在建立国内垃圾邮件图像数据库的基础上,首先提取图像的颜色、纹理和形状特征,再经K-NN分类算法优选出HSV颜色直方图特征对不同分类器进行训练、测试和性能比较,提出将基于粗糙集的K-NN算法、Naive Bayes算法和SVM算法构成的3种基分类器相结合,并基于串行迭代提升的方法形成集成学习的强分类器。该方法可以实现对国内图像垃圾邮件的有效过滤,使图像垃圾邮件过滤的准确率和召回率同时得到提升,分别为97.3%和96.1%,误判率降低到了2.7%。  相似文献   

14.
Multimedia Tools and Applications - Automated annotation of skin biopsy histopathological images provides valuable information and supports for diagnosis, especially for the discrimination between...  相似文献   

15.
在大数据环境背景下,传统机器学习算法多采用单机离线训练的方式,显然已经无法适应持续增长的大规模流式数据的变化。针对该问题,提出一种基于Flink平台的分布式在线集成学习算法。该方法基于Flink分布式计算框架,首先通过数据并行的方式对在线学习算法进行分布式在线训练;然后将训练出的多个子模型通过随机梯度下降算法进行模型的动态权重分配,实现对多个子模型的结果聚合;与此同时,对于训练效果不好的模型利用其样本进行在线更新;最后通过单机与集群环境在不同数据集上做实验对比分析。实验结果表明,在线学习算法结合Flink框架的分布式集成训练,能达到集中训练方式下的性能,同时大大提高了训练的时间效率。  相似文献   

16.
17.
Image annotation can be formulated as a classification problem. Recently, Adaboost learning with feature selection has been used for creating an accurate ensemble classifier. We propose dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation in MPEG-7 standard. In each iteration of Adaboost learning, genetic algorithm (GA) is used to dynamically generate and optimize a set of feature subsets on which the weak classifiers are constructed, so that an ensemble member is selected. We investigate two methods of GA feature selection: a binary-coded chromosome GA feature selection method used to perform optimal feature subset selection, and a bi-coded chromosome GA feature selection method used to perform optimal-weighted feature subset selection, i.e. simultaneously perform optimal feature subset selection and corresponding optimal weight subset selection. To improve the computational efficiency of our approach, master-slave GA, a parallel program of GA, is implemented. k-nearest neighbor classifier is used as the base classifier. The experiments are performed over 2000 classified Corel images to validate the performance of the approaches.  相似文献   

18.
Image annotation is posed as multi-class classification problem. Pursuing higher accuracy is a permanent but not stale challenge in the field of image annotation. To further improve the accuracy of image annotation, we propose a multi-view multi-label (abbreviated by MVML) learning algorithm, in which we take multiple feature (i.e., view) and ensemble learning into account simultaneously. By doing so, we make full use of the complementarity among the views and the base learners of ensemble learning, leading to higher accuracy of image annotation. With respect to the different distribution of positive and negative training examples, we propose two versions of MVML: the Boosting and Bagging versions of MVML. The former is suitable for learning over balanced examples while the latter applies to the opposite scenario. Besides, the weights of base learner is evaluated on validation data instead of training data, which will improve the generalization ability of the final ensemble classifiers. The experimental results have shown that the MVML is superior to the ensemble SVM of single view.  相似文献   

19.
基于二维系统综合预测迭代学习控制(2D-IPILC)方法,结合轨迹更新策略研究点对点跟踪问题的控制算法.该算法既能够充分利用点对点问题在非跟踪点的自由度,也可以通过引入模型预测控制来提高时间轴的抗干扰能力.由于轨迹更新中引入时变参数,该2D模型为时变2D模型,因此分析状态转移矩阵特性和系统全响应,进而采用2D理论分析算法的收敛性和收敛条件,并分析参数对控制效果的影响.相比固定轨迹算法,该算法的收敛速度更快,稳定性比直接型优化算法更好.最后通过仿真实例验证了所提出算法的效果.  相似文献   

20.
文本表示是自然语言处理中的基础任务,针对传统短文本表示高维稀疏问题,提出1种基于语义特征空间上下文的短文本表示学习方法。考虑到初始特征空间维度过高,通过计算词项间互信息与共现关系,得到初始相似度并对词项进行聚类,利用聚类中心表示降维后的语义特征空间。然后,在聚类后形成的簇上结合词项的上下文信息,设计3种相似度计算方法分别计算待表示文本中词项与特征空间中特征词的相似度,以形成文本映射矩阵对短文本进行表示学习。实验结果表明,所提出的方法能很好地反映短文本的语义信息,能对短文本进行合理而有效的表示学习。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号