首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在重力荷载作用下,高层、超高层建筑结构竖向构件压缩变形差异会引发重力荷载向下传递过程中的转移,并使结构构件产生附加内力,不利于结构受力。为此提出高层建筑重力荷载作用下水平构件铰接调平设计法。在整体结构计算模型中将所有水平构件铰接(包括去掉斜撑、楼层内斜腹杆),重力荷载一次施加,调整竖向构件截面及结构布置,可避免内力重分布的影响,较快达到结构在重力荷载作用下各楼层竖向构件(包括各墙及柱)竖向压缩变形基本一致,在此基础上计算模型结构水平构件恢复刚接(包括安装斜撑、楼层内斜腹杆),进入整体结构分析,可有效减小及消除重力荷载作用下竖向构件压缩变形差异导致的较大结构附加内力,保证楼面平整、防止建筑倾斜,利于结构安全、经济、合理和建筑物的正常使用。  相似文献   

2.
依据欧洲规范EC2关于混凝土弹性模型、收缩、徐变随时间变化规定,考虑施工顺序加载、竖向构件压应力差异、伸臂桁架后连接、下料长度调整等因素,结合某超高层建筑结构,实现了施工全过程模拟,获得各施工阶段外框架柱和核心筒剪力墙的竖向变形量及差异,对施工过程中关键构件的承载力进行验算,同时比较了后连接方案对水平伸臂桁架内力的影响。分析结果表明:在超高层设计时必须考虑混凝土收缩徐变等非荷载作用下的变形,竖向构件应考虑竖向变形而产生的压缩量进行预调整,采用后连接的施工措施可以减小水平伸臂桁架的内力。  相似文献   

3.
本工程为钢筋混凝土核心筒+钢管混凝土框架混合结构,采用欧洲规范CEB-FIP模式计算混凝土收缩徐变影响,具体分析了竖向构件累积变形以及收缩徐变对框架柱的影响。分析结果表明,施工完成5年后最大柱轴力(与伸臂桁架连接处柱)约增加10%,在施工图设计阶段应考虑收缩徐变的不利影响,并采用调平设计。收缩徐变对伸臂桁架内力和变形产生影响,计算中应考虑此部分荷载叠加,使伸臂桁架满足规范要求。重力荷载引起的楼层水平位移会影响设备的安装,设计中也应考虑。同时施工阶段和使用阶段必须对收缩徐变进行监控。  相似文献   

4.
该项目结构高度为349.8m,与常规超高层建筑的框架核心筒体系不同,采用X向框架-带加强桁架双筒结构体系,Y向剪力墙结构体系。考虑混凝土收缩徐变效应,对这一新型结构体系进行从开始施工到投入使用20年重力荷载作用下的长期变形分析,研究在重力荷载长期作用下,该新型结构体系的竖向变形和水平变形规律;以及因混凝土收缩徐变造成的框架柱和核心筒变形差对框架柱、框架梁和加强桁架内力的影响。研究表明,该项目最大竖向变形发生在中上部楼层,混凝土收缩徐变不会加剧该结构体系的水平变形,因混凝土收缩徐变效应产生的框架柱、框架梁附加内力不可忽略,设计中需予以考虑。  相似文献   

5.
基于B3模型的竖向构件差异变形分析   总被引:1,自引:0,他引:1  
为研究巨型框架伸臂核心筒结构中由收缩和徐变引起的巨柱和核心筒的竖向差异变形,基于B3收缩徐变模型,采用应变增量法进行MATLAB编程,模拟荷载逐层施加的实际施工过程。对某一巨型框架伸臂核心筒结构进行了研究,考虑施工过程、混凝土收缩和徐变影响,对高层混凝土结构构件在竖向荷载作用下的竖向变形进行了计算;计算构件在楼板施工前后巨柱和核心筒的弹性、非弹性缩短以及竖向差异变形;进行了差异缩短变形分析,采用逐层修正法进行补偿。结果表明:考虑重力荷载、混凝土收缩和徐变时,巨柱和钢筋混凝土筒由收缩和徐变产生的非弹性变形占总变形的509/6以上,且该比例随时问呈增大趋势;巨柱和核心筒的收缩变形远小于徐变变形,收缩和徐变变形最终趋于一定值;楼板施工结束时竖向变形近似相等的构件,在楼板施工后一定时期的竖向差异变形很大;若顸层楼板施工结束时荷载全部施加完毕,则楼板施工后的最大竖向变形值出现在中间某一层;对于有具体要求的特殊结构,采用逐层修正法可降低差异变形在伸臂桁架中引起的附加内力。  相似文献   

6.
对宁波新世界广场5号地块稀疏外框柱超高层塔楼分别采用一次加载模型、分层加载模型、构件施工时间差模型进行了考虑材料时变效应的施工模拟分析,分析了不同荷载施加方式对核心筒剪力墙和框架柱竖向变形、竖向变形差及杆件内力等的影响。研究表明,施工过程中荷载施加方式对结构内力和变形影响较大,结构设计时应根据结构特点选取合适的计算模型进行计算;收缩徐变引起的混凝土累积竖向变形占竖向构件总变形比例较大,施工阶段核心筒收缩徐变变形占总变形比例达45%;施工过程中由荷载施加方式和材料时变效应对结构造成的不利影响,可在构件设计阶段采用强度包络设计方法或施工阶段采取补偿变形差的方式来予以考虑。  相似文献   

7.
武汉江城之门为双塔高位连体的门形超高层建筑,建筑高度241.9m,采用钢管混凝土柱框架+核心筒+加强层+连体巨型跨层桁架结构体系,核心筒角部及相交处内嵌钢骨,部分楼层内嵌钢板。采用SAP2000软件分别建立基于CEB-FIP 90、CEB-FIP 2010、GL2000理论的分析模型和无连体单塔模型,进行了考虑收缩徐变的非线性阶段施工模拟分析,对比了典型竖向构件变形和内力重分布结果。分析结果表明,伸臂桁架可有效平衡外框柱和核心筒的竖向变形差异;高位刚性连体的布置加大了外框柱和核心筒的竖向变形差异,其差异主要为弹性变形,收缩徐变引起的附加变形差异较小;混凝土收缩徐变带来的竖向构件轴力重分布表现为核心筒剪力墙卸载,外框柱和剪力墙内嵌钢骨加载,轴力变化最大值位于连体相邻下部楼层;对伸臂桁架和腰桁架内力影响主要体现为弦杆轴力的增大。  相似文献   

8.
在长期荷载作用下,混合结构桁架带两侧会产生竖向差异变形,这会使桁架层间贮存较大的次内力。为使桁架层间的次内力得到有效控制,分析了桁架带两侧竖向差异变形允许值、桁架层封闭时间以及竖向补偿值的有效性等影响因素,并讨论了它们之间的相互关联性。结果表明,竖向补偿后桁架封闭时间越晚,桁架层间斜腹杆次内力越小;对桁架封闭前产生的竖向差异变形予以补偿,能有效控制桁架间的次内力。  相似文献   

9.
重庆西永综保区监管大楼办公主楼为大跨度连体结构,连体跨度58.6m,连接体底部与顶部均采用钢结构桁架与两侧的筒体形成巨型框架。根据办公主楼的结构特点并结合施工单位转换桁架整体提升的施工方案,采用SAP2000进行了办公主楼的温度应力分析与施工模拟分析,得到连接体桁架的温度应力,并得到各施工步的内力与变形,按温度应力及施工模拟分析的结果进行设计。分析表明桁架杆件会承担较大的温度应力,按阶段施工并考虑混凝土徐变效应后,结构各构件会发生内力重分布,内力重分布对桁架弦杆的影响大于桁架腹杆。  相似文献   

10.
超高层结构竖向变形及差异问题分析与处理   总被引:2,自引:0,他引:2  
依据欧洲规范EC2关于混凝土弹性模量变化、徐变和收缩的规定,考虑施工顺序加载、混凝土徐变收缩、竖向构件压应力差异、施工过程中构件长度的调整等因素,结合屋顶高381m的南京紫峰大厦超高层结构,分析计算了超高层结构中组合柱与芯筒剪力墙的竖向变形及差异。结果表明,结构封顶后半年时,结构中部的型钢混凝土组合柱会产生最大80mm左右的竖向变形,芯筒剪力墙会产生最大70mm左右的竖向变形;组合柱与芯筒墙的最大竖向变形差可达12mm左右,发生在结构中部偏上。合理安排施工顺序可以使得竖向构件变形差在伸臂桁架中产生的内力较小。  相似文献   

11.
以某在建高层混凝土结构为背景,考虑分析工况、施工工况、时间等因素的影响,采用SAP2000对由收缩和徐变产生的竖向变形和内力变化进行了分析。结果表明,徐变和竖向荷载是导致竖向变形的主要原因,而收缩是导致竖向变形的次要原因;对于框架核心筒结构,框架与核心筒的变形差随时间的变化逐渐变小并趋于稳定,由变形产生的构件内力逐渐减小;施工完成后结构已经完成了大部分的变形,同时施工完成后变形随时间变化的速率逐渐变缓;由收缩与徐变结构产生的竖向变形和内力变化不会对该高层建筑结构的使用和安全产生明显影响。  相似文献   

12.
任瑞  刘冰 《结构工程师》2013,29(2):56-62
分析了混合结构体系超高层建筑在施工期间和使用阶段的竖向变形问题。采用CEB-FIP(1990)规范中混凝土收缩/徐变模型,计算了钢管混凝土柱和钢筋混凝土核心筒间的竖向变形差异,并分析了竖向变形差对关键构件内力的影响。计算中考虑了筒体先于外框柱施工、混凝土材料的收缩徐变、施工过程找平调整等因素的影响。结果表明,结构封顶一年后外框柱和核心筒最大竖向变形分别为50 mm(51层)和55 mm(51层),最大竖向变形差为12.9 mm(68层),同时由于竖向变形差引起的伸臂桁架次内力增量较小,结构具有足够的安全度。  相似文献   

13.
由于荷载的增加和混凝土的收缩徐变,超高层建筑在施工过程中会产生附加内力和变形,有必要对结构展开施工监测。通过对某超高层建筑开展为期680d的施工监测,研究施工过程中钢管混凝土柱与钢筋混凝土剪力墙的应变发展规律;同时,利用有限元方法分析了主体结构封顶后竖向变形的分布特点与成因。研究表明,随着时间的增加,同一楼层的钢管混凝土柱竖向应变增量明显大于剪力墙,但各构件的应变增量处于可控范围内;由混凝土徐变引起的钢管混凝土柱和钢筋混凝土剪力墙的竖向变形最多分别可达总变形的29.9%和33.5%,徐变引起的结构变形应予以充分重视。  相似文献   

14.
经过多种补偿方案的比较,提出钢框架-钢筋混凝土核心筒体系竖向变形差异的楼层组优化补偿方案,并研究竖向变形差异补偿对结构的内力和变形的影响。利用有限元程序SAP2000进行结构分析,在分析中分层施加竖向荷载,考虑混凝土收缩和徐变的影响。分析表明,钢框架-钢筋混凝土核心筒体系竖向变形差异楼层组优化补偿方案,既能保证补偿的精度,又经过优化使施工更为方便,是一种比较合理的补偿方案。采用楼层组优化补偿方案可以使楼层的最大累积变形差异明显减小,保证水平构件的水平度。在补偿结构中,只有位于平面四角处的连系梁内力减小较多,其他梁或柱的内力变化很小。与原结构类似,在补偿结构中,钢框架柱之间的竖向变形差异远远小于柱-筒之间的竖向变形差异。  相似文献   

15.
采用CEB-FIP(1990)规范中的混凝土收缩徐变模型,考虑含钢率、套箍效应对混凝土收缩徐变的影响,计算了某超高层巨型混合结构竖向构件的竖向变形,分析弹性模量发展对竖向构件变形的影响,并研究竖向变形差对关键构件的内力影响。为实现在设定阶段竖向构件达到设计标高,对楼层标高预留高度和竖向构件下料预留长度的控制方法进行了研究。进一步提出减小竖向构件竖向变形差的措施,并通过算例验证了其有效性。研究表明,混凝土弹性模量发展对竖向构件变形影响不大;而混凝土的收缩徐变对超高层混合结构的变形及内力影响较大,应以考虑了混凝土收缩徐变的结构模型作为地震分析的初始态对关键构件进行校核;在带钢管混凝土柱的超高层巨型混合结构中,控制钢管混凝土柱压应力水平适当大于钢筋混凝土核心筒的压应力水平,可有效降低混凝土收缩徐变引起的竖向变形差及附加内力。  相似文献   

16.
超高层结构在施工及设计使用过程中的竖向变形对结构的安全性、适用性有重要影响。以一幢位于设防烈度为8度地区的超高层结构为例,在混凝土的收缩徐变作用下,分别考虑伸臂桁架与主体结构同时施工和后施工对结构竖向变形与内力的影响。该建筑总高度为270m,采用设置三道加强层的型钢框架-核心筒结构体系。基于MIDAS/Gen软件,对该结构进行数值模拟分析。研究表明:在竣工五年后,主体结构的变形主要以混凝土的收缩徐变为主,占结构总变形的50%以上;伸臂桁架采用后连接施工时,腹杆内产生的附加应力比同时连接减小为83%~107%;柱底轴力在主体结构的使用过程中逐渐增大,而剪力墙底部反力逐渐减小。超高层结构的施工过程中,构件应进行预抛高和预留下料长度处理。  相似文献   

17.
根据CEB-FIP 1990规范中关于混凝土收缩、徐变的规定,按照施工顺序建模加载,考虑混凝土收缩徐变、施工标高调整、伸臂桁架连接固定时间、竖向钢构件预调整量等因素,结合结构高度580 m的上海中心大厦超高层建筑结构,分析计算了超高层结构中巨型柱与核心筒剪力墙的竖向变形及差异.分析表明,在重力荷载作用下,上海中心塔楼结...  相似文献   

18.
施工模拟是超高层建筑结构设计的重要内容。施工过程中结构的材料参数、几何参数、荷载和边界条件等都随施工进程而改变,施工结束后的内力和变形与施工过程、时间效应密切相关。利用Midas/gen有限元软件,对某超高层建筑结构进行了考虑混凝土收缩徐变影响的施工模拟研究,分析了收缩徐变对核心筒和框架柱竖向变形、竖向变形差及内力等因素的影响;并对不同施工方案下结构的竖向变形差异及风振影响等问题进行了研究。  相似文献   

19.
以深圳平安金融中心为工程背景,对其进行重力荷载作用下的长期变形分析。考虑混凝土收缩徐变以及竖向构件含钢率的影响,按设计标高逐层找平、逐层找正施工模拟,研究超高层建筑重力荷载下长期变形规律,分析不均匀的竖向变形对结构安全的影响。进一步提出在施工中给竖向构件适当预留长度以补偿预计的竖向构件变形的设计思路,实现在设定阶段(如建筑投入使用1年)竖向构件达到设计标高,实现楼面平整,以满足建筑正常使用要求,并对楼层标高预留高度和竖向构件下料预留长度的控制方法进行了分析。研究表明,通过对超高层重力荷载作用下的变形分析与控制,可以掌握结构的长期变形规律,得到构件附加内力,控制楼面标高。  相似文献   

20.
以深圳平安金融中心为工程背景,对其进行重力荷载作用下的长期变形分析。考虑混凝土收缩徐变以及竖向构件含钢率的影响,按设计标高逐层找平、逐层找正施工模拟,研究超高层建筑重力荷载下长期变形规律,分析不均匀的竖向变形对结构安全的影响。进一步提出在施工中给竖向构件适当预留长度以补偿预计的竖向构件变形的设计思路,实现在设定阶段(如建筑投入使用1年)竖向构件达到设计标高,实现楼面平整,以满足建筑正常使用要求,并对楼层标高预留高度和竖向构件下料预留长度的控制方法进行了分析。研究表明,通过对超高层重力荷载作用下的变形分析与控制,可以掌握结构的长期变形规律,得到构件附加内力,控制楼面标高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号