首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《混凝土》2018,(10)
通过对比两种养护温度下铝酸盐水泥基砂浆的力学性能、物相分析和微观结构,研究了不同养护温度(20、50℃)对铝酸盐水泥基砂浆性能的影响。结果表明:20℃养护温度下铝酸盐水泥基砂浆性能明显优于50℃。20℃养护温度下,铝酸盐水泥基砂浆中含有较多的钙矾石、铝胶和AFm,其抗压强度随着养护龄期的增长而增加,28 d龄期试件强度较高,最高强度可达89.1 MPa;50℃养护温度下,铝酸盐水泥基砂浆主要含有钙矾石、C_3AH_6、铝胶和C-S-H,其抗压强度普遍偏低,且随着养护龄期的增长,部分7 d龄期试件出现略微强度倒缩,28 d龄期试件强度逐渐增加,最高强度仅达46.2 MPa。  相似文献   

2.
主要研究了在0、4、8、12℃养护温度下碳酸锂对硫铝酸盐水泥水化和性能的影响。结果表明,低温养护环境下,掺入少量的碳酸锂可以明显缩短硫铝酸盐水泥的凝结时间,当碳酸锂掺量大于0.10%时,硫铝酸盐水泥凝结时间基本上不再变化,0、4、8、12℃养护环境下,掺0.10%碳酸锂的硫铝酸盐水泥初、终凝时间分别为90、150 min,57、74 min,43、57 min,23、38 min。碳酸锂可以促进硫铝酸盐水泥中硫铝酸钙矿物在低温下的早期水化,从而提高低温养护下硫铝酸盐水泥净浆的12 h、1 d和3 d抗压强度,但对硫铝酸钙28 d的水化程度无影响,而且当碳酸锂掺量较高时,低温下养护的硫铝酸盐水泥净浆7 d和28 d抗压强度会降低。  相似文献   

3.
研究了海水环境下铝酸盐水泥与单掺硅灰、矿渣组成的复合水泥浆体的抗压强度和水化产物变化规律。结果表明,海水对铝酸盐水泥具有侵蚀作用;掺入矿物掺合料能够促进铝酸盐水泥的水化,改善水泥浆体孔隙结构,生成水化钙铝黄长石等水化产物,有利于浆体结构密实和强度发展,进而提高铝酸盐水泥强度及抗蚀性能,且随着矿物掺合料掺量的增多,抗蚀性能逐渐提升。与矿渣相比,硅灰对提高铝酸盐水泥抗蚀性能具有更好的效果,海水环境下掺入10%硅灰,28 d抗压强度最高,超过淡水环境下空白组。  相似文献   

4.
研究了20℃、35℃、50℃养护条件下硅灰和矿粉对硫铝酸盐水泥水化的影响,分析了抗压强度、孔溶液p H值和水化产物的变化规律。结果表明:随着养护温度的升高,掺矿粉和硅灰的硫铝酸盐水泥抗压强度提高,但50℃养护条件下纯硫铝酸盐水泥浆体在28 d的抗压强度有明显倒缩现象,是由于高温下水化产物分解所致;掺入硅灰可以有效改善硫铝酸盐水泥后期抗压强度倒缩问题,掺入矿粉由于其细度和活性的限制改善能力有限。  相似文献   

5.
考查了不同温度下快硬高强硫铝酸盐水泥水化性能影响规律,从外加剂方面对其凝结性能影响规律与机理进行了分析.结果表明,快硬高强硫铝酸盐水泥早期强度受温度影响显著,当温度为-3℃时,快硬高强硫铝酸盐水泥1 d龄期内强度无增长,正温条件下,温度越低,水化程度越低,但对水化产物的种类并无影响.缓凝剂对快硬高强硫铝酸盐水泥的影响主...  相似文献   

6.
戴国欣 《广东建材》2012,28(3):18-19
主要研究了硅酸盐水泥在不同温度(20℃、0℃、-10℃、-18℃)下的力学行为,实验表明,随着早期养护温度的降低,水泥净浆的抗压强度、水泥砂浆的抗折/抗压强度在不同龄期均下降,其中在-10℃、-18℃情况下,水泥净浆28天强度分别为标准养护强度的60%、52.4%,水泥砂浆3天的抗折强度分别为标准养护强度的41.2%、29.4%,而水泥砂浆3天抗压强度分别为标准养护强度的54.2%、21.3%。XRD和IR分析表明浆体早期养护温度越低,水化速率和水化程度就越低,这使水泥浆体来不及建立起抵抗冰冻的水化产物结构体系,从而表现出较差的力学性能和抗冻性。  相似文献   

7.
研究了过硫磷石膏矿渣水泥制备制品的不同养护温度、养护时间、静停时间等对水泥制品性能的影响。深入探讨了过硫磷石膏矿渣水泥制品适宜的养护制度,并对养护制度与水泥水化过程、水化产物形成及微观结构发展等的关系及其对过硫磷石膏矿渣水泥制品性能的影响机理进行了探讨。结果表明,过硫磷石膏矿渣水泥的最佳养护制度为:静停2d后,在40℃温度下养护16h。随着养护温度提高,水泥水化速度加快,早期强度增加但后期强度降低,当养护温度达到80℃时,由于不能形成水化产物钙矾石,强度明显降低。  相似文献   

8.
通过静态和动态2种海水养护方式对海水拌养下的海工硫铝酸盐水泥抗海水侵蚀性能及机理进行了研究。结果表明:与静态养护相比,海水拌合且海水动态养护下,海工硫铝酸盐水泥的抗压强度和抗海水侵蚀性能最为优异。其原因可解释为:海水能对海工硫铝酸盐水泥试块及时补充足够数量的SO42-,由于SO42-数量的增大,AFt的结构水增多,密度减小,AFt晶体生长更为完善。此外,由于浆体结构中AFm量非常少,而AFt能在Cl-溶液中稳定存在,因而浆体结构中由AFm转化来的Friedel盐极少,对浆体结构的损伤程度极低。  相似文献   

9.
湿热养护硫铝酸盐水泥混凝土的强度及微结构   总被引:1,自引:0,他引:1  
研究了硫铝酸盐水泥混凝土在不同温度下经湿热养护24h以及在湿热养护后再继续标养28d强度的变化规律.结果表明:在20~100℃各温度下,相同龄期养护的混凝土强度变化不大,而经110℃和120℃湿热养护的混凝土强度损失严重.硫铝酸盐水泥硬化体经90℃湿热养护24h后即有少量AFm生成,100~120℃湿热养护24h后,其AFm生成量增加,再经28d标养后AFm向AFt转变.  相似文献   

10.
以赤泥、矿渣为主要原料,通过掺入激发剂制备得到赤泥-矿渣胶凝材料,研究了不同养护温度对该胶凝材料强度的影响,并通过XRD、FTIR、SEM分析了养护温度对其水化产物组成及微观结构的影响。结果表明:在20~60℃内,提高养护温度,赤泥-矿渣胶凝材料的早期强度大幅度提高,经40℃和60℃养护的试样3 d抗压强度较20℃养护的分别提高54.9%和100.2%;养护温度对反应产物种类没有影响,仍为非晶态凝胶。  相似文献   

11.
研究碳酸锂对硫铝酸盐水泥凝结时间、抗压强度、抗折强度、水化产物种类及形貌的影响。研究结果表明,碳酸锂可明显加快硫铝酸盐水泥水化速率和水化历程,缩短硫铝酸盐水泥凝结时间,改善硫铝酸盐水泥早期抗压强度和抗折强度,并且没有改变硫铝酸盐水泥水化产物种类,但掺入碳酸锂会降低硫铝酸盐水泥后期抗压强度和抗折强度。  相似文献   

12.
研究了大掺量矿物掺合料与铝酸盐水泥复合浆体的抗压强度、电阻率、化学收缩和XRD的变化规律。结果表明,在淡水和海水环境下,一定量(40%以内)矿渣的掺入有利于促进铝酸盐水泥强度的发展,有效抑制了铝酸盐水泥后期强度倒缩;矿物掺合料可提高铝酸盐水泥抗海水侵蚀性能;铝酸盐水泥浆体的电阻率与化学收缩之间存在良好的相关性,水泥浆体的电阻率和化学收缩随着矿物掺合料掺量的增大而减小;在水化早期,矿渣和粉煤灰均未参与铝酸盐水泥的水化过程;矿渣在后期生成稳定的水化产物C_2ASH_8,其抑制晶相转变的效果较粉煤灰更为显著。  相似文献   

13.
通过测试2种不同水泥基低负温套筒灌浆料和1种常温套筒灌浆料在不同温度环境及养护方式下的流动度和抗压强度,对比研究了三者在低负温环境下的性能差异。结果表明,常温套筒灌浆料在低负温下极易被冻害,强度无法有效增长;掺激发剂的硅酸盐水泥基低负温套筒灌浆料可长期在低负温环境下养护,有良好的低温流动性,-5℃养护28 d抗压强度大于85 MPa;硫铝酸盐水泥基低负温套筒灌浆料只可在低负温环境下短期养护,再转标准养护后强度也能继续增长,-5℃养护7 d+标养28 d抗压强度可达85 MPa以上。  相似文献   

14.
为避免蒸汽养护给混凝土长期耐久性带来的负面影响,免蒸养混凝土技术的研究逐渐得到重视,纳米水化硅酸钙由于其显著的早强功效而被应用于免蒸养混凝土制备。采用标准养护、蒸汽养护和掺加纳米水化硅酸钙晶核早强剂(n-C-S-H)3种方式制备C60混凝土,研究了n-C-S-H对混凝土性能的影响。结果表明,10、20、30℃养护条件下掺n-C-S-H制备的混凝土12 h抗压强度较对比样分别提高了185%、113%、34%,并且其收缩性能与抗渗性能较蒸养混凝土得到明显提高。加入n-C-S-H缩短了水泥的初、终凝时间,加快了新拌混凝土的坍落度损失。n-C-S-H显著加快了水泥的早期水化,特别是C3S的水化速率,这种加速效果在1 d后逐渐减小直至消失。  相似文献   

15.
研究了碳酸锂(Li2CO3)对硫铝酸盐水泥凝结时间、水化历程和强度发展的影响.结果表明,Li2CO3可大幅度加速硫铝酸盐水泥的凝结,显著缩短硫铝酸盐水泥的水化诱导期,提高硫铝酸盐水泥早期水化放热速率和水化放热量,但降低后期的水化放热量:Li2CO3降低硫铝酸盐水泥后期强度,这是由于掺入Li2CO3后,水泥水化早期生成的致密水化产物层包裹了水化矿物,从而使得后期水化进程被延缓所致.  相似文献   

16.
聚羧酸系减水剂对铝酸盐水泥性能的影响   总被引:1,自引:0,他引:1  
测定了自制聚羧酸高效减水剂不同掺量对铝酸盐水泥净浆扩展度、凝结时间及胶砂强度的影响,通过扫描电镜测试了水化产物的形貌,对聚羧酸高效减水剂对铝酸盐水泥早期结构的作用机理进行了分析。结果表明:使用自制聚羧酸高效减水剂在适宜掺量时能显著提高铝酸盐水泥的净浆扩展度,并且具有良好的扩展度保持性能;标准稠度时,聚羧酸高效减水剂的掺入使铝酸盐水泥净浆的初凝时间略有延长,随掺量的增大会显著延长终凝时间;相同水灰比时,较低掺量聚羧酸高效减水剂对铝酸盐水泥的1d抗折强度和抗压强度影响不大,掺量大于0.6%时,会显著降低铝酸盐水泥的1d抗折强度和抗压强度,但聚羧酸高效减水剂掺量不同,对铝酸盐水泥胶砂3d抗折强度和抗压强度影响不大。  相似文献   

17.
研究了硬石膏掺量(0%,1%,2%,3%)对硅酸盐水泥-铝酸盐水泥复合体系抗压强度和干缩性能的影响。结果表明:随着硬石膏掺量的增加,在水化早期,硅酸盐水泥-铝酸盐水泥二元体系的抗压、抗折强度变化不大,水化后期,硬化砂浆的抗压抗折强度在2%硬石膏掺量时达到最大;随着硬石膏掺量的增加,硅酸盐水泥-铝酸盐水泥复合体系的收缩率逐渐降低,且与预养护龄期无关。  相似文献   

18.
为研究海水浸泡养护对磷酸钾镁水泥(MKPC)浆体微观结构和性能的影响,测试了不同养护条件下MKPC浆体试件的抗压强度和干燥收缩率,分析了其物相组成和微观结构.结果表明:在海水浸泡环境下,如果MKPC浆体试件已凝结且具有一定的初始结构强度,其主要水化产物MgKPO_4·6H_2O(MKP)在呈弱碱性的海水环境下溶解度低、水解现象减轻;海水的渗入使MKPC浆体试件的水化反应得以持续进行,水化反应生成较多的MKP,在弱碱性海水环境下,MKP更易结晶,生成的MKP晶体结晶程度高、缺陷少,后续生成的MKP晶体不断填充MKPC硬化体的孔隙,使硬化体结构趋于致密;自然养护3d后浸入海水养护的MKPC试件有较高的抗压强度和较低的干燥收缩率,其28,60d抗压强度较全程自然养护的MKPC试件分别提高13%和5%,而其60d干燥收缩率仅为全程自然养护MKPC试件的12%,为28d后浸入海水养护MKPC试件的23%.  相似文献   

19.
为促进煤矸石集料在水泥混凝土中的应用,选用自燃(活性)和非自燃(非活性)煤矸石作为细集料,研究水灰比、掺量、养护制度等不同条件下两种矸石细集料-水泥基材料力学性能的发展规律,分析煤矸石的种类、活性、掺量等因素对水泥基材料力学性能的影响。试验结果表明:活性矸石作为细集料,能够在水化初期与水泥水化产物发生一定程度的二次水化反应,水化反应能提高其早期强度;非活性矸石细集料-水泥基材料的强度随水灰比的增大而减小,而活性矸石则存在合理的水灰比范围;高温养护能够促进煤矸石细集料-水泥基材料的早龄期的水化进程,提高其早期抗压强度,但28d龄期中小掺量的矸石细集料-水泥基材料的抗压强度会产生高温负效应,而对抗折强度的影响则相反。  相似文献   

20.
《混凝土》2014,(8)
研究了原样磷石膏、200℃煅烧磷石膏、800℃煅烧磷石膏制备的磷石膏水泥的力学性能(对应编号分别为:MPC-1、MPC-2和MPC-3),进行了不同改性磷石膏基水泥早期水化放热速率及28 d水化产物的测试分析。结果表明:煅烧磷石膏尤其高温煅烧磷石膏可发挥更好的硫酸盐激发效果,有效提高磷石膏基水泥的强度,尤其是早期强度。800℃煅烧磷石膏水泥MPC-3试样3、28d强度分别为20.1、44.7 MPa,达到42.5R水泥强度等级要求;煅烧磷石膏基水泥的早期水化进程明显加快,相对MPC-1试样,MPC-2、MPC-3第二放热峰出现时间分别提前约10 h和17 h;磷石膏基水泥的水化产物主要为钙矾石和C-S-H凝胶,高温煅烧磷石膏基水泥水化产物更为密集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号