首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冯勇  吴凯  刘梦安 《汽车零部件》2012,(5):50-54,69
选择了某微型汽车悬架的磁流变减震器为研究对象,运用汽车动力学理论建立了1/4汽车半主动悬架控制系统动力学模型,基于模糊PID控制算法设计了模糊PID控制器.车辆在不同路面输入谱和不同行驶速度下,以悬架的簧载质量加速度、悬架动挠度和轮胎动载荷3个基本参数来表征磁流变半主动悬架系统的振动特性,运用Matlab/Simulink软件对该悬架系统进行仿真研究,仿真结果表明,当汽车在不同等级的路面上行驶时,随着车速的提高,采用模糊PID控制半主动悬架汽车的簧载质量加速度和悬架动挠度的幅值相对于被动悬架均明显减小,表现出了良好的控制效果.轮胎动载荷与被动悬架的幅度大体相当,偶尔还比被动悬架幅值高,但综合来看,模糊PID控制器能更好地减小汽车振动,进一步提高汽车的乘坐舒适性.结果同时也说明了模糊PID控制具有很好的鲁棒性.采用磁流变减振器的半主动悬架系统有效地改善了汽车乘坐舒适性和操纵稳定性.  相似文献   

2.
在分析磁流变减振器的结构与原理的基础上,建立起较为简化的汽车磁流变减振器数学模型。同时,建立了1/4汽车半主动悬架系统动力学模型及路面谱模型;分别设计了基于磁流变半主动悬架系统的天棚控制器、地棚控制器、PID控制器及模糊控制器,并利用Matlab/Simulink软件进行了仿真试验对比研究。在天棚控制策略下,车身加速度降低16.32%,悬架动挠度降低16.91%;在地棚控制下,车身加速度降低11.29%,悬架动挠度降低2.94%;在PID控制下,车身加速度降低79%,悬架动挠度反而上升73%;在模糊控制下,车身加速度降低21%,悬架动挠度降低12%,轮胎动载荷降低5%。结果表明,模糊控制磁流变半主动悬架有效减小了车身加速度、悬架动挠度、轮胎动载荷,明显地提高了汽车乘坐舒适性和操纵稳定性。  相似文献   

3.
《机械科学与技术》2014,(11):1708-1713
设计了一种应用于磁流变半主动悬架的自适应模糊控制器,该控制器利用神经网络训练模糊控制规则与隶属度函数,实现了神经网络与模糊控制的优势互补。为了综合反映汽车的侧倾和俯仰性能,建立了七自由度的半主动悬架非线性动力学模型和四轮随机路面模型,采用改进型BoucWen模型模拟磁流变阻尼器。同时为了验证控制器的稳定性,加入制动模块与转向模块,可以更加真实的反映汽车的行驶路况。仿真结果表明:神经模糊控制方法能够减小悬架的动位移、车身的垂直加速度、侧倾角加速度、俯仰角加速度,提高汽车的舒适性和安全性,改善幅度高于利用隔代遗传算法优化的分数阶PID控制器控制的半主动悬架。  相似文献   

4.
为了提高汽车的乘坐舒适性,抑制因路面不平引起的汽车振动,利用多体动力学软件ADAmS建立某SUV整车模型,利用mATLAB设计了一种BP神经网络模糊PID主动悬架控制器,并与模糊PID控制器进行仿真对比,深入研究模糊PID控制器及BP神经网络模糊PID主动悬架控制器控制效果。研究发现,采用提出的BP神经网络模糊PID主动控制策略后,汽车悬架系统的车身加速度、悬架动挠度、轮胎动变形分别比被动控制下降了36.3%、25.1%和12.0%,而采用模糊PID控制策略只下降了34.3%、19.1%和10.4%。这说明所提出的BP神经网络模糊PID控制策略具有更加优异的主动悬架控制效果。  相似文献   

5.
为了提高半主动悬架的控制效果,设计了节流口可调式阻尼减振器,根据汽车系统动力学原理建立了半主动悬架整车模型,采用Mamdani模糊控制策略,设计了基于可调阻尼减振器的汽车半主动悬架双模糊控制器,并以某微型轿车为例在Matlab/Simulink环境下进行了阶跃激励仿真试验和随机路面激励仿真试验.仿真结果表明,采用所提出的模糊控制策略改善了汽车的行驶平顺性和乘坐舒适性,同时还降低了悬架被击穿的可能,提高了轮胎的接地性.  相似文献   

6.
介绍了一种采用功率电传方式的作动器,提出了基于EHA的可能量再生的新型汽车半主动悬架样机结构。同时,建立了1/4汽车半主动悬架动力学模型,设计了用于EHA半主动悬架系统的模糊控制器和天棚控制算法,并进行了仿真试验研究。结果表明,基于EHA的半主动悬架采用模糊控制方法能够兼顾不同频率路面以及有效降低车体加速度、悬架动挠度、轮胎动载荷,从而提高了汽车的乘坐舒适性和操纵稳定性。  相似文献   

7.
为了改善半主动悬架的控制效果,利用变论域理论对模糊PID控制器的输入论域和输出论域进行调节。根据阻尼可调两级压力式油气悬架的力学特性,建立半车半主动悬架动力学模型,在MATLAB/Simulink中构建半车半主动悬架控制模型,以冲击路面和随机路面作为输入激励进行仿真。结果表明,不同路面激励下,变论域模糊PID控制悬架和模糊PID控制悬架的减振效果均明显好于被动悬架,在冲击路面激励下的减振效果较好。冲击路面激励下,相较于模糊PID控制悬架,变论域模糊PID控制悬架的前、后车身垂直加速度和车身俯仰角加速度均方根分别减小30.89%,34.36%,37.00%,车身动挠度均方根比较接近,进一步提高了越野车的行驶平顺性。  相似文献   

8.
一种用于1/2汽车半主动悬架的模糊PID控制器   总被引:2,自引:0,他引:2  
设计了一种用于1/2车体四自由度的液压半主动悬架的参数自整定模糊PID控制器,利用模糊控制规则对PID参数进行在线修改.应用MATLAB/Simulink控制系统仿真软件,以正弦信号路面、脉冲信号路面和C级路面三种典型路面作为输入信号对该半主动悬架模型进行计算机仿真,仿真结果表明具有模糊PID控制器的半主动悬架在提高车辆乘坐的舒适性方面明显优于被动悬架和单纯的模糊控制悬架,具有较好的自适应能力.  相似文献   

9.
车辆悬架系统对整车乘坐舒适性和操纵稳定性起着至关重要的作用。通过建立路面白噪声模型和1/4车辆模型,应用线性最优反馈策略设计出状态反馈控制器,充分利用MATLAB/Simulink仿真平台对半主动悬架和被动悬架的各项性能进行了仿真,并作了对比。结果表明,较被动悬架,采用半主动悬架时车身加速度、悬架动挠度、车轮动载荷均有不同程度的减小,进一步说明了半主动悬架的优越性。  相似文献   

10.
PID控制器在汽车半主动悬架应用中存在参数确定的问题,针对这一问题设计了一种基于遗传算法优化整定PID参数的方法.该方法利用遗传算法的全局优化能力,以半主动悬架的性能指标为目标函数对PID参数进行优化设计.应用该方法进行汽车半主动悬架平顺性仿真.仿真结果表明,基于遗传算法优化的PID控制器的汽车半主动悬架相对于PID控制主动悬架以及被动悬架而言,改善了车身垂向加速度和悬架动行程.同时在充分利用PID控制器优势的基础上,改善了其参数确定过程中存在的问题.  相似文献   

11.
路面的不平度是行驶的车辆所受主要激励源之一,因此,把积分白噪声随机路面输入模型的建立作为基础,建立了四分之一车辆2自由度半主动悬架的运动微分方程。在此基础上,设计了车辆半主动悬架系统PID控制器;针对车辆半主动悬架运动存在非线性的特点,运用T-S模糊控制理论,构建了车辆二自由度半主动悬架系统的T-S模型。运用MATLAB/Simulink仿真软件,实现了PID控制和T-S模糊控制仿真模型并输出其仿真比较图形,进行了两种控制算法的车辆平顺性性能评价指标的均方根值的比较分析,结果表明所设计的T-S模糊控制器在提高车辆的平顺性方面,与PID控制相比,控制效果有了明显的改善。  相似文献   

12.
通过分析传统模糊PID控制器的不足之处,提出一种增强型多参数半主动悬架模糊PID控制器;与传统模糊PID控制器相比,该控制器可将路面条件变化考虑进去,并基于路面条件的变化实现变论域和PID控制器控制参数的二次调整,弥补了传统模糊PID控制器输入参数过于单一的缺点。建立了车辆二自由度1/4模型,并在Matlab/Simulink平台中建立相应的仿真模型;通过对被动悬架系统、模糊PID控制系统和增强型多参数半主动悬架模糊PID控制系统仿真分析,证明了增强型多参数半主动悬架模糊PID控制系统的先进性。  相似文献   

13.
自动驾驶智能汽车逐渐普及,其在通过城市路面的沟渠、井盖和减速带等特殊路面时,制动与减速时的稳定性与乘坐舒适性较差,为改善这一状况,对悬架的设计提出了更高的要求。为了提高自动驾驶智能汽车制动与减速时的稳定性,通过融合比例积分微分(Proportional Integral Derivative, PID)与模糊算法,设计了针对这些特殊路面的主动悬架模糊PID控制器,在Matlab/Simulink软件中搭建了半车主动悬架仿真模型,通过惯性测量单元(Inertial Measurement Unit, IMU)实车测量了沟渠路面的路面激励信息,并完成仿真试验。结果表明,当自动驾驶智能汽车在C级路面和沟渠路面行驶时,设计的主动悬架模糊PID控制器较单一算法的控制器更有效地降低了车身垂向加速度、车身俯仰角加速度、车轮动载荷和悬架动行程,改善了悬架性能。  相似文献   

14.
建立了1/4车体二自由度的液压半主动悬架模型及动力学模型。设计了用于该半主动悬架的模糊控制器,应用Matlab/Simulink控制系统仿真软件,以正弦信号作为路面输入信号对1/4汽车液压半主动悬架模型进行计算机仿真。仿真结果表明具有此模糊控制器的半主动悬架在提高车辆乘坐的舒适性和操纵的稳定性方面明显优于被动悬架。  相似文献   

15.
悬架系统对汽车乘坐舒适性和操纵稳定性的改善起着重要的作用。为提高汽车行驶的平顺性,设计了单神经元PID控制器,并利用人工蜂群算法在线优化单神经元PID控制增益。以车身垂直加速度、轮胎动位移、悬架动行程为评价指标,研究控制器的减振效果和当路面输入改变、模型参数变化时的适应性,对1/4汽车主动悬架模型进行仿真了分析。结果表明:基于蜂群的单神经元PID控制器有效地降低了车身垂直加速度,且有较强的鲁棒性,进一步提高了汽车行驶的平顺性。  相似文献   

16.
为提升某汽车的行驶平顺性及其适应路面时变的能力,提出一种座椅主动悬架和底盘主动悬架的改进模糊PID集成控制策略。相比于一般模糊PID控制方法,该控制策略能够根据轮胎所受路面激励和驾驶员座椅垂向速度的实时变化,在线调整控制器的量化因子、比例因子及PID参数值,以实现对控制力更精确的实时调控。建立八自由度整车平顺性模型,在MATLAB/Simulink软件中模拟汽车在A级、B级、C级和D级路面行驶的状况,结果表明:整车主动悬架改进模糊PID集成控制能够大幅提升汽车行驶平顺性和操纵稳定性,且效果明显优于模糊PID控制。  相似文献   

17.
以某轿车模型为研究对象,采用虚拟样机技术,使用Adams/Car软件建立了车辆多体动力学模型;基于模糊控制策略设计了主动悬架模糊控制器并通过Matlab/Simulink创建了主动悬架模糊控制器模型。利用Adams/car和Matlab/Simulink对装有主动悬架系统的整车进行随机路面输入和脉冲路面输入的联合仿真分析。仿真结果表明采用模糊控制的主动悬架系统比被动悬架更能够显著降低轮胎动载荷、悬架动挠度和车身垂向加速度,一定程度上改善了汽车的行驶平顺性和操纵稳定性。  相似文献   

18.
汽车空气悬架联合型模糊PID控制   总被引:1,自引:0,他引:1  
以汽车空气悬架系统为研究对象,建立了1/4空气悬架模型以及路面白噪声模型,将模糊控制理论和PID控制策略经过有机结合后运用于半主动空气悬架系统控制,并利用MATLAB/Simulink软件进行了仿真研究。通过仿真结果对比表明,与单纯的PID控制、模糊控制相比,在该联合型模糊PID控制策略下的半主动空气悬架能更好地降低车身垂直加速度和悬架动挠度,具有较好的鲁棒性,使车辆行驶平顺性也具有一定程度的提高。  相似文献   

19.
半主动悬架系统自适应模糊控制器的应用是为了提高汽车悬架的阻尼效果和操控性。建立 4自由度 1 /2车辆模型 ,在此模型基础上 ,设计了模糊控制器 ,论述了半主动悬架系统的模糊控制方法 ,说明此方法对悬架质心加速度、轮胎动载荷和悬架俯仰角等性能的提高有益。对悬架在各种输入激励下的仿真效果与被动悬架作了比较 ,结果令人满意。  相似文献   

20.
建立了车辆座椅悬架系统和路面输入模型,应用模糊控制理论,对车辆座椅半主动悬架模糊控制器进行设计,并在Matlab/Simulink环境下对此模糊控制器进行了仿真,将它与被动悬架以及用模糊控制器控制的半主动悬架做了比较及性能分析.仿真结果证明,相对于其他两种悬架来说,具有模糊控制器作用的半主动悬架在改善座椅悬架振动加速度、速度和乘坐舒适性方面有明显效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号