首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qureshi  Imran  Ma  Jun  Abbas  Qaisar 《Multimedia Tools and Applications》2021,80(8):11691-11721
Multimedia Tools and Applications - Retinal fundus image analysis (RFIA) for diabetic retinopathy (DR) screening can be used to reduce the risk of blindness among diabetic patients. The RFIA...  相似文献   

2.
Neural Computing and Applications - The patients with diabetes have a chance to develop diabetic retinopathy (DR) which affects to the eyes. DR can cause blindness if the patients do not control...  相似文献   

3.
The characteristics of human body such as fingerprint, face, hand palm and iris are measured, recorded and identified by performing comparison using biometric devices. Even though it has not seen widespread acceptance yet, retinal identification based on retinal vasculatures in retina provides the most secure and accurate authentication means among biometric systems. Using retinal images taken from individuals, retinal identification is employed in environments such as nuclear research centers and facilities, weapon factories, where extremely high security measures are needed. The superiority of this method stems from the fact that retina is unique to every human being and it would not be changed during human life. Adversely, other identification approaches such as fingerprint, face, palm and iris recognition, are all vulnerable in that those characteristics can be corrupted via plastic surgeries and other changes. In this study we propose an alternate personal identification system based on retinal vascular network in retinal images, which tolerates scale, rotation and translation in comparison. In order to accurately identify a person our new approach first segments vessel structure and then employ similarity measurement along with the tolerations. The developed system, tested on about four hundred images, presents over 95% of success which is quite promising.  相似文献   

4.
Automatic artery/vein (A/V) classification is one of the important topics in retinal image analysis. It allows the researchers to investigate the association between biomarkers and disease progression on a huge amount of data for arteries and veins separately. Recent proposed methods, which employ contextual information of vessels to achieve better A/V classification accuracy, still rely on the performance of pixel-wise classification, which has received limited attention in recent years. In this paper, we show that these classification methods can be markedly improved. We propose a new normalization technique for extracting four new features which are associated with the lightness reflection of vessels. The accuracy of a linear discriminate analysis classifier is used to validate these features. Accuracy rates of 85.1, 86.9 and 90.6% were obtained on three datasets using only local information. Based on the introduced features, the advanced graph-based methods will achieve a better performance on A/V classification.  相似文献   

5.
Multimedia Tools and Applications - Glaucoma is an ocular disorder that can permanently damage patient vision. Initially, it reduces the visual field, and may cause blindness. Effective methods for...  相似文献   

6.
Analysis of retinal vessel tree characteristics is an important task in medical diagnosis, specially in cases of diseases like vessel occlusion, hypertension or diabetes. The detection and classification of feature points in the arteriovenous eye tree will increase the information about the structure allowing its use for medical diagnosis. In this work a method for detection and classification of retinal vessel tree feature points is presented. The method applies and combines imaging techniques such as filters or morphologic operations to obtain an adequate structure for the detection. Classification is performed by analysing the feature points environment. Detection and classification of feature points is validated using the VARIA database. Experimental results are compared to previous approaches showing a much higher specificity in the characterisation of feature points while slightly increasing the sensitivity. These results provide a more reliable methodology for retinal structure analysis.  相似文献   

7.
One of the most significant retinal abnormality in which an individual loses the vision is diabetic retinopathy (DR). The appropriate way to treat this disease would be easier if it is detected at an earlier stage. The study on the vasculature extracted from illumination correction on the fundus image brings the presence of diabetic retinopathy. This preprocessing involves three steps. Initially illumination and reflectance estimation is done and then illumination correction is employed and finally the clipped histogram equalization is done to preserve the brightness of the image so that the information on the retinal image may not get saturated. Here, k-means segmentation process has been done and the local binary pattern (LBP) has been calculated. The selected feature vectors are then classified by using an echo state neural network (ESNN). The proposed method has been tested on publically available database DIARETDB1 that contained 89 DR fundus images in total. The result of detecting and classifying the pathology based on vasculature study on these images yielded sensitivity of 86.46%, specificity of 80.47%, and accuracy of 96.92%.  相似文献   

8.

Diseases of the eye require manual segmentation and examination of the optic disc by ophthalmologists. Though, image segmentation using deep learning techniques is achieving remarkable results, it leverages on large-scale labeled datasets. But, in the field of medical imaging, it is challenging to acquire large labeled datasets. Hence, this article proposes a novel deep learning model to automatically segment the optic disc in retinal fundus images by using the concepts of semi-supervised learning and transfer learning. Initially, a convolutional autoencoder (CAE) is trained to automatically learn features from a large number of unlabeled fundus images available from the Kaggle’s diabetic retinopathy (DR) dataset. The autoencoder (AE) learns the features from the unlabeled images by reconstructing the input images and becomes a pre-trained network (model). After this, the pre-trained autoencoder network is converted into a segmentation network. Later, using transfer learning, the segmentation network is trained with retinal fundus images along with their corresponding optic disc ground truth images from the DRISHTI GS1 and RIM-ONE datasets. The trained segmentation network is then tested on retinal fundus images from the test set of DRISHTI GS1 and RIM-ONE datasets. The experimental results show that the proposed method performs on par with the state-of-the-art methods achieving a 0.967 and 0.902 dice score coefficient on the test set of the DRISHTI GS1 and RIM-ONE datasets respectively. The proposed method also shows that transfer learning and semi-supervised learning overcomes the barrier imposed by the large labeled dataset. The proposed segmentation model can be used in automatic retinal image processing systems for diagnosing diseases of the eye.

  相似文献   

9.
We have studied some fundamental problems towards the understanding of color ocular fundus images which are used in the mass diagnosis of adult diseases such as hypertension and diabetes.These problems are: the extraction of blood vessels from the retinal background; the recognition of arteries and veins; the detection and analysis of peculiar regions such as hemorrhages, exudates, optic discs and arterio-venous crossings.We propose a computer method for each of these problems and show some experimental results.  相似文献   

10.
Eye-related disease such as diabetic retinopathy (DR) is a medical ailment in which the retina of the human eye is smashed because of damage to the tiny retinal blood vessels in the retina. Ophthalmologists identify DR based on various features such as the blood vessels, textures and pathologies. With the rapid development of methods of analysis of biomedical images and advanced computing techniques, image processing-based software for the detection of eye disease has been widely used as an important tool by ophthalmologists. In particular, computer vision-based methods are growing rapidly in the field of medical images analysis and are appropriate to advance ophthalmology. These tools depend entirely on visual analysis to identify abnormalities in Retinal Fundus images. During the past two decades, exciting improvement in the development of DR detection computerised systems has been observed. This paper reviews the development of analysing retinal images for the detection of DR in three aspects: automatic algorithms (classification or pixel to pixel methods), detection methods of pathologies from retinal fundus images, and extraction of blood vessels of retinal fundus image algorithms for the detection of DR. The paper presents a detailed explanation of each problem with respect to retinal images. The current techniques that are used to analyse retinal images and DR detection issues are also discussed in detail and recommendations are made for some future directions.  相似文献   

11.

Vessel extraction from retinal fundus images is essential for the diagnosis of different opthalmologic diseases like glaucoma, diabetic retinopathy and hypertension. It is a challenging task due to presence of several noises embedded with thin vessels. In this article, we have proposed an improved vessel extraction scheme from retinal fundus images. First, mathematical morphological operation is performed on each planes of the RGB image to remove the vessels for obtaining noise in the image. Next, the original RGB and vessel removed RGB image are transformed into negative gray scale image. These negative gray scale images are subtracted and finally binarized (BW1) by leveling the image. It still contains some granular noise which is removed based on the area of connected component. Further, previously detected vessels are replaced in the gray-scale image with mean value of the gray-scale image and then the gray-scale image is enhanced to obtain the thin vessels. Next, the enhanced image is binarized and thin vessels are obtained (BW2). Finally, the thin vessel image (BW2) is merged with the previously obtained binary image (BW1) and finally we obtain the vessel extracted image. To analyze the performance of our proposed method we have experimented on publicly available DRIVE dataset. We have observed that our algorithm have provides satisfactory performance with the sensitivity, specificity and accuracy of 0.7260, 0.9802 and 0.9563 respectively which is better than the most of the recent works.

  相似文献   

12.
Eye detection plays an important role in applications related to face recognition. The position of eyes can be used as a reliable reference for other facial feature detection. This paper presents a novel approach for the precise and reliable detection of eyes by introducing a ternary eye-verifier. Initially, the face region is detected by combining color information and the Haar-like feature detector. The face region is then binarized and filtered with circular filters to detect eye candidates at the peaks in the filtered response. Each eye candidate is fed into a ternary eye-verifier that includes a proposed eye feature extractor based on K-means clustering with compensation for variety in iris color. The eye template in the eye-verifier is constructed based on both the knowledge of eye geometry and the detected eye features. The template matching is made by the ternary Hamming distance. Experiments over a collection of FERET face database and house-made face database with different head poses confirm that the proposed method achieves precise and reliable detection of eyes from color facial images with variation in illumination, pose, eye gazing direction, and race.  相似文献   

13.
14.
Breast cancer is configured as a public health problem that affects mainly women population. One of the main ways of prevention is through screening mammography. The interpretation made by the physician is a repetitive task because of a low contrast image and the examination of several exams. So, computer systems have been proposed to aid detection step and helps physician, with the aim to increase sensitivity at the same time that reduces invasive procedures. Although these systems had improved the sensitivity of the original examination of mammography, they also generate a lot of false positives. This paper presents a methodology for reducing false positives by analyzing the diversity of approaches with improved spatial decomposition. After experiments the results reaches a high level of sensitivity at the same time promote a high rate of reduction of false positives.  相似文献   

15.
A robust multiscale stereo matching algorithm is proposed to find reliable correspondences between low contrast and weakly textured retinal image pairs with radiometric differences. Existing algorithms designed to deal with piecewise planar surfaces with distinct features and Lambertian reflectance do not apply in applications such as 3D reconstruction of medical images including stereo retinal images. In this paper, robust pixel feature vectors are formulated to extract discriminative features in the presence of noise in scale space, through which the response of low-frequency mechanisms alter and interact with the response of high-frequency mechanisms. The deep structures of the scene are represented with the evolution of disparity estimates in scale space, which distributes the matching ambiguity along the scale dimension to obtain globally coherent reconstructions. The performance is verified both qualitatively by face validity and quantitatively on our collection of stereo fundus image sets with ground truth, which have been made publicly available as an extension of standard test images for performance evaluation.  相似文献   

16.
Regular eye screening is essential for the early detection and treatment of the diabetic retinopathy. This paper presents a novel automatic screening system for diabetic retinopathy that focuses on the detection of the earliest visible signs of retinopathy, which are microaneurysms. Microaneurysms are small dots on the retina, formed by ballooning out of a weak part of the capillary wall. The detection of the microaneurysms at an early stage is vital, and it is the first step in preventing the diabetic retinopathy. The paper first explores the existing systems and applications related to diabetic retinopathy screening, with a focus on the microaneurysm detection methods. The proposed decision support system consists of an automatic acquisition, screening and classification of diabetic retinopathy colour fundus images, which could assist in the detection and management of the diabetic retinopathy. Several feature extraction methods and the circular Hough transform have been employed in the proposed microaneurysm detection system, alongside the fuzzy histogram equalisation method. The latter method has been applied in the preprocessing stage of the diabetic retinopathy eye fundus images and provided improved results for detecting the microaneurysms.  相似文献   

17.
Neural Computing and Applications - There has been an alarming increase in the number of skin cancer cases worldwide in recent years, which has raised interest in computational systems for...  相似文献   

18.
A fundamental problem of computer diagnostics is the detection of a vascular system on an image and the determination of its local and global parameters. Methods for tracing vessels and estimating their diagnostic features based on a mathematical model of a fundus fragment are described. This work was supported by the Ministry of Education of the Russian Federation, Administration of Samara Region, the U.S. Civilian Research and Development Foundation in the framework of the Russian-American program “Basic Research and Higher Education” (CRDF project no. SA-014-02), and by the Russian Foundation for Basic Research, project no. 03-01-00642.  相似文献   

19.
This paper presents a robust, reliable iris location system for close-up, grey scale images of a single eye. The system is meant as a bootstrap or recovery module for automated iris tracking within medical applications. We model the iris contour with an active ellipse, sensitive to intensity gradients across its perimeter. In this way, we avoid modelling the noisy appearance of the iris (e.g. corneal reflections). The iris–sclera intensity transition is modelled at two spatial scales with Petrou–Kittler optimal ramp filters. The optimal ellipse is identified by a simulated annealing algorithm tuned to the problem characteristics. The system performed accurately and robustly with 327 real images against substantial occlusion levels and varying image quality, subject, eye shape and skin colour.  相似文献   

20.
Multimedia Tools and Applications - Fundus image is widely used diagnosis method and involves the retinal tissues which can be important biomarkers for diagnosing diseases. Many studies have...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号