共查询到20条相似文献,搜索用时 0 毫秒
1.
Computational Visual Media - Image segmentation is one of the most basic tasks in computer vision and remains an initial step of many applications. In this paper, we focus on interactive image... 相似文献
2.
With the development of Computer-aided Diagnosis (CAD) and image scanning techniques, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital histopathology. Since 2004, WSI has been used widely in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computer algorithms, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists to obtain more stable and quantitative results with minimum labor costs and improved diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning techniques in WSI segmentation, classification, and detection are reviewed. Finally, the existing methods are studied, and the application prospects of the methods in this field are forecasted. 相似文献
3.
For the past decade, many image segmentation techniques have been proposed. These segmentation techniques can be categorized into three classes, (1) characteristic feature thresholding or clustering, (2) edge detection, and (3) region extraction. This survey summarizes some of these techniques. In the area of biomedical image segmentation, most proposed techniques fall into the categories of characteristic feature thresholding or clustering and edge detection. 相似文献
5.
This article describes a multiobjective spatial fuzzy clustering algorithm for image segmentation. To obtain satisfactory segmentation performance for noisy images, the proposed method introduces the non-local spatial information derived from the image into fitness functions which respectively consider the global fuzzy compactness and fuzzy separation among the clusters. After producing the set of non-dominated solutions, the final clustering solution is chosen by a cluster validity index utilizing the non-local spatial information. Moreover, to automatically evolve the number of clusters in the proposed method, a real-coded variable string length technique is used to encode the cluster centers in the chromosomes. The proposed method is applied to synthetic and real images contaminated by noise and compared with k-means, fuzzy c-means, two fuzzy c-means clustering algorithms with spatial information and a multiobjective variable string length genetic fuzzy clustering algorithm. The experimental results show that the proposed method behaves well in evolving the number of clusters and obtaining satisfactory performance on noisy image segmentation. 相似文献
7.
In the last few years, hypergraph-based methods have gained considerable attention in the resolution of real-world clustering problems, since such a mode of representation can handle higher-order relationships between elements compared to the standard graph theory. The most popular and promising approach to hypergraph clustering arises from concepts in spectral hypergraph theory [53], and clustering is configured as a hypergraph cut problem where an appropriate objective function has to be optimized. The spectral relaxation of this optimization problem allows to get a clustering that is close to the optimum, but this approach generally suffers from its high computational demands, especially in real-world problems where the size of the data involved in their resolution becomes too large. A natural way to overcome this limitation is to operate a reduction of the hypergraph, where spectral clustering should be applied over a hypergraph of smaller size. In this paper, we introduce two novel hypergraph reduction algorithms that are able to maintain the hypergraph structure as accurate as possible. These algorithms allowed us to design a new approach devoted to hypergraph clustering, based on the multilevel paradigm that operates in three steps: (i) hypergraph reduction; (ii) initial spectral clustering of the reduced hypergraph and (iii) clustering refinement. The accuracy of our hypergraph clustering framework has been demonstrated by extensive experiments with comparison to other hypergraph clustering algorithms, and have been successfully applied to image segmentation, for which an appropriate hypergraph-based model have been designed. The low running times displayed by our algorithm also demonstrates that the latter, unlike the standard spectral clustering approach, can handle datasets of considerable size. 相似文献
8.
Segmentation is an important research area in image processing, which has been used to extract objects in images. A variety of algorithms have been proposed in this area. However, these methods perform well on the images without noise, and their results on the noisy images are not good. Neutrosophic set (NS) is a general formal framework to study the neutralities’ origin, nature, and scope. It has an inherent ability to handle the indeterminant information. Noise is one kind of indeterminant information on images. Therefore, NS has been successfully applied into image processing algorithms. This paper proposed a novel algorithm based on neutrosophic similarity clustering (NSC) to segment gray level images. We utilize the neutrosophic set in image processing field and define a new similarity function for clustering. At first, an image is represented in the neutrosophic set domain via three membership sets: T, I and F. Then, a neutrosophic similarity function (NSF) is defined and employed in the objective function of the clustering analysis. Finally, the new defined clustering algorithm classifies the pixels on the image into different groups. Experiments have been conducted on a variety of artificial and real images. Several measurements are used to evaluate the proposed method's performance. The experimental results demonstrate that the NSC method segment the images effectively and accurately. It can process both images without noise and noisy images having different levels of noises well. It will be helpful to applications in image processing and computer vision. 相似文献
9.
近些年,机器人技术得到了迅猛的发展,应用越来越广泛.随着机器人技术的推广和普及,对机器人使用的要求也越来越高,其中对智能机器人的要求尤显迫切.机器视觉是智能机器人研究领域的一个重要研究方向.在机器人视觉系统中,核心问题是目标提取,对目标实时、准确、快速提取的关键技术是图像分割.由于机器人感知的环境的复杂性及目标的多样性,往往导致机器人感知获得的图像数据量较大且图像本身存在不可预知的复杂性,这就对准确的目标分割和提取处理提出了挑战性问题.本文针对高分辨率图像数据集的分割处理,提出一种新的聚类算法,即根据数据点能量和的大小识别类代表点和类成员点,通过数据点间的竞争识别出最有能力成为簇成员的数据点,并将其与mean shift聚类算法有效地结合应用于彩色图像分割问题中,能够快速高效地实现高分辨率图像的目标分割,并得到较好的图像分割效果.实验结果表明,本文算法在分割效果和分割效率上明显优于传统聚类算法. 相似文献
10.
Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. 相似文献
11.
The development of common and reasonable criteria for evaluating and comparing the performance of segmentation algorithms has always been a concern for researchers in the area. As it is discussed in the paper, some of the measures proposed are not adequate for general images (i.e. images of any sort of scene, without any assumption about the features of the scene objects or the illumination distribution) because they assume a certain distribution of pixel gray-level or colour values for the interior of the regions. This paper reviews performance measures not performing such an assumption and proposes a set of new performance measures in the same line, called the percentage of correctly grouped pixels (CG), the percentage of over-segmentation (OS) and the percentage of under-segmentation (US). Apart from accounting for misclassified pixels, the proposed set of new measures are intended to compute the level of fragmentation of reference regions into output regions and vice versa. A comparison involving similar measures is provided at the end of the paper. 相似文献
13.
Segmentation of an image into regions and the labeling of the regions is a challenging problem. In this paper, an approach that is applicable to any set of multifeature images of the same location is derived. Our approach applies to, for example, medical images of a region of the body; repeated camera images of the same area; and satellite images of a region. The segmentation and labeling approach described here uses a set of training images and domain knowledge to produce an image segmentation system that can be used without change on images of the same region collected over time. How to obtain training images, integrate domain knowledge, and utilize learning to segment and label images of the same region taken under any condition for which a training image exists is detailed. It is shown that clustering in conjunction with image processing techniques utilizing an iterative approach can effectively identify objects of interest in images. The segmentation and labeling approach described here is applied to color camera images and two other image domains are used to illustrate the applicability of the approach. 相似文献
14.
Dental X-ray image segmentation (DXIS) is an indispensable process in practical dentistry for diagnosis of periodontitis diseases from an X-ray image. It has been said that DXIS is one of the most important and necessary steps to analyze dental images in order to get valuable information for medical diagnosis support systems and other recognition tools. Specialized data mining methods for DXIS have been investigated to achieve high accuracy of segmentation. However, traditional image processing and clustering algorithms often meet challenges in determining parameters or common boundaries of teeth samples. It was shown that performance of a clustering algorithm is enhanced when additional information provided by users is attached to inputs of the algorithm. In this paper, we propose a new cooperative scheme that applies semi-supervised fuzzy clustering algorithms to DXIS. Specifically, the Otsu method is used to remove the Background area from an X-ray dental image. Then, the FCM algorithm is chosen to remove the Dental Structure area from the results of the previous steps. Finally, Semi-supervised Entropy regularized Fuzzy Clustering algorithm (eSFCM) is opted to clarify and improve the results based on the optimal result from the previous clustering method. The proposed framework is evaluated on a real collection of dental X-ray image datasets from Hanoi Medical University, Vietnam. Experimental results have revealed that clustering quality of the cooperative framework is better than those of the relevant ones. The findings of this paper have great impact and significance to researches in the fields of medical science and expert systems. It has been the fact that medical diagnosis is often an experienced and case-based process which requests long time practicing in real patients. In many situations, young clinicians do not have chance for such the practice so that it is necessary to utilize a computerized medical diagnosis system which could simulate medical processes from previous real evidences. By learning from those cases, clinicians would improve their experience and responses for later ones. In the view of expert systems, this paper made uses of knowledge-based algorithms for a practical application. This shows the advantages of such the algorithm in the conjunction domain between expert systems and medical informatics. The findings also suggested the most appropriate configuration of the algorithm and parameters for this problem that could be reused by other researchers in similar applications. The usefulness and significance of this research are clearly demonstrated within the extent of real-life applications. 相似文献
15.
Reducing noise has always been one of the standard problems of the image analysis and processing community. Often though, at the same time as reducing the noise in a signal, it is important to preserve the edges. Edges are of critical importance to the visual appearance of images. So, it is desirable to preserve important features, such as edges, corners and other sharp structures, during the denoising process. This paper presents a review of some significant work in the area of image denoising. It provides a brief general classification of image denoising methods. The main aim of this survey is to provide evolution of research in the direction of edge-preserving image denoising. It characterizes some of the well known edge-preserving denoising methods, elaborating each of them, and discusses the advantages and drawbacks of each. Basic ideas and improvement of the denoising methods are also comprehensively summarized and analyzed in depth. Often, researchers face difficulty in selecting an appropriate denoising method that is specific to their purpose. We have classified and systemized these denoising methods. The key goal of this paper is to provide researchers with background on a progress of denoising methods so as to make it easier for researchers to choose the method best suited to their aims. 相似文献
16.
Multimedia Tools and Applications - Image segmentation is the method of partitioning an image into a group of pixels that are homogenous in some manner. The homogeneity dependents on some... 相似文献
17.
针对模糊C-均值聚类算法分割图像时容易产生模糊边缘的缺点,提出了一种结合图像梯度和模糊C-均值聚类的图像分割方法.该方法利用图像梯度反映出来的目标边界,对由模糊C-均值聚类所获得的聚类区域进行分割,把因模糊性而划分到目标区域的像素点与目标区域进行分离,同时利用区域增长方法找出干扰区域并删除.将该算法应用到胰腺ERCP图像分割,实验表明,改进算法能够比较准确地分割出图像中的目标,减少因模糊聚类产生的模糊边缘. 相似文献
18.
为提高现有模糊C均值聚类算法(FCM)对噪声图像分割的效果和稳定性,提出一种基于FCM的图像分割算法。利用非局部空间信息构建和图像,根据和图像的直方图,自动选择初始化聚类中心,通过求取目标函数极小值完成图像分割。理论分析和实验结果表明,该算法比现有算法更加有效和稳定,对噪声图像有更强的鲁棒性。 相似文献
19.
This paper presents a novel image segmentation algorithm based on neutrosophic c-means clustering and indeterminacy filtering method. Firstly, the image is transformed into neutrosophic set domain. Then, a new filter, indeterminacy filter is designed according to the indeterminacy value on the neutrosophic image, and the neighborhood information is utilized to remove the indeterminacy in the spatial neighborhood. Neutrosophic c-means clustering is then used to cluster the pixels into different groups, which has advantages to describe the indeterminacy in the intensity. The indeterminacy filter is employed again to remove the indeterminacy in the intensity. Finally, the segmentation results are obtained according to the refined membership in the clustering after indeterminacy filtering operation. A variety of experiments are performed to evaluate the performance of the proposed method, and a newly published method neutrosophic similarity clustering (NSC) segmentation algorithm is utilized to compare with the proposed method quantitatively. The experimental results show that the proposed algorithm has better performances in quantitatively and qualitatively. 相似文献
20.
Image segmentation is the basis of image analysis, object tracking, and other fields. However, image segmentation is still a bottleneck due to the complexity of images. In recent years, fuzzy clustering is one of the most important selections for image segmentation, which can retain information as much as possible. However, fuzzy clustering algorithms are sensitive to image artifacts. In this study, an improved image segmentation algorithm based on patch-weighted distance and fuzzy clustering is proposed, which can be divided into two steps. First, the pixel correlation between adjacent pixels is retrieved based on patch-weighted distance, and then the pixel correlation is used to replace the influence of neighboring information in fuzzy algorithms, thereby enhancing the robustness. Experiments on simulated, natural and medical images illustrate that the proposed schema outperforms other fuzzy clustering algorithms. 相似文献
|