首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复合保温板用聚氨酯硬泡的阻燃性能研究   总被引:4,自引:2,他引:2  
探讨了氢氧化铝、三聚氰胺、DMMP、TCEP的阻燃机理及阻燃效果,并对几种阻燃剂进行了复配使用,同时对聚异氰脲酸酯指数对燃烧性能的影响进行了研究。结果表明,DMMP的阻燃效果最好,当其用量为9份时,就能达到国家标准B2级。不同阻燃剂复合使用,其协同效应显著。在聚异氰脲酸酯泡沫中,随着异氰酸酯指数的升高,泡沫的阻燃性变好,当异氰酸酯指数为3.0时,泡沫的阻燃级别达到国家标准B2级。以混合聚醚多元醇70份、聚酯多元醇30份、异氰酸酯指数1.20、硅油稳定剂2份、复合催化剂1份、发泡剂HCFC—141b20份与水1份、复合阻燃剂12份等为基础配方,所得泡沫密度约为32k/m^3,压缩强度约170kPa,阻燃性能符合国家标准GB/T8624—97B2级,尺寸稳定性良好。  相似文献   

2.
采用聚醚多元醇、多异氰酸酯、泡沫稳定剂、液态阻燃剂、催化剂和水制备了全水发泡阻燃硬质聚氨酯泡沫塑料,研究了水用量、催化剂、泡沫稳定剂及阻燃剂对聚氨酯硬泡性能的影响。结果表明,水用量影响聚氨酯硬泡的泡沫密度、压缩强度、尺寸稳定性、吸水率等性能;不同催化剂复配影响聚氨酯硬泡的泡孔结构;泡沫稳定剂影响泡孔均匀性和聚氨酯硬泡的导热性能;磷酸三乙酯(TEP)对硬泡阻燃性能的影响优于磷酸三氯丙酯(TCPP)和阻燃聚醚多元醇(F-7190)。随TEP用量的增加,聚氨酯硬泡的氧指数增大,压缩强度降低;随F-7190用量增加,聚氨酯硬泡的氧指数略有增大,压缩强度先增大后变小。  相似文献   

3.
制备了复合阻燃剂阻燃硬质聚氨酯(PUR-R)泡沫塑料,研究了复合阻燃剂甲基膦酸二甲酯(DMMP)、三(2-氯异丙基)磷酸酯(TCPP)、可膨胀型石墨(EG)和氢氧化铝(ATH)对PUR-R泡沫塑料阻燃性能的影响,采用正交试验确定了复合阻燃剂的最佳配比。用极限氧指数(LOI)测定仪、烟密度测定仪和万能试验机测定了阻燃PUR-R泡沫塑料的LOI、烟密度等级和压缩强度,结果表明,当DMMP,TCPP,EG,ATH的质量比为2∶2∶3∶3时,在25份聚醚多元醇中添加12份复合阻燃剂,制备的阻燃PUR-R泡沫塑料的LOI达26.3%,烟密度等级为77.63,压缩强度为0.18 MPa,阻燃PUR-R泡沫塑料具有良好的综合性能。  相似文献   

4.
全水发泡阻燃聚氨酯硬质泡沫塑料的制备与性能   总被引:3,自引:0,他引:3  
采用多元醇、异氰酸酯、催化剂、发泡剂和阻燃剂等为原料制备了全水发泡阻燃聚氨酯硬质泡沫(PURF),讨论了聚醚多元醇种类、催化剂、发泡剂、异氰酸酯指数以及阻燃剂对PURF性能的影响。结果表明,聚酯多元醇能够改善泡孔结构,但降低压缩强度和尺寸稳定性;不同催化剂复配,可以控制发泡工艺;水发泡剂与泡沫的密度、泡孔结构、力学性能有关;异氰酸酯指数在1.1~1.2时,泡沫的压缩强度、尺寸稳定性等较好;三(2-氯异丙基)磷酸酯(TCPP)可赋予PURF一定的阻燃性,但对泡体结构、压缩强度和尺寸稳定性有影响。  相似文献   

5.
对利用木质素磺酸钠溶剂液化产物与聚醚多元醇复配制备改性硬质聚氨酯泡沫材料的阻燃性能进行了研究。采用甲基膦酸二甲酯(DMMP)为阻燃剂,对添加量为10%~16%范围内的改性聚氨酯泡沫材料的结构与性能进行了研究。研究结果表明,DMMP与发泡体系中的其他组分相容性好,DMMP的添加使发泡速度有所下降,但对材料的微观形貌影响不大。与未添加DMMP的泡沫材料相比,添加DMMP的泡沫材料极限氧指数提高,阻燃性增强,当DMMP添加量为16%时,材料的极限氧指数最大,为25.3;材料的压缩强度与表观密度随DMMP添加量的变化而变化,当DMMP添加量为11%时,压缩强度和表观密度都达到最大值,分别为70.55kg/m~3和0.47MPa。综合比较木质素磺酸钠改性硬质聚氨酯泡沫的力学性能和阻燃性能,当DMMP添加量为13%时,综合性能表现较优,压缩强度为0.30MPa,极限氧指数为24.99。  相似文献   

6.
以六(对羟甲基苯氧基)环三磷腈(HHPCP)与甲基磷酸二甲酯(DMMP)组成复配阻燃剂制备了阻燃聚氨酯硬泡。利用FT-IR研究了HHPCP与多亚甲基多苯基多异氰酸酯(PAPI)的交联反应,通过扫描电子显微镜、极限氧指数测试仪、热重分析仪以及微型量热仪研究了HHPCP/DMMP不同配比对聚氨酯硬泡的阻燃性能和热性能的影响。结果表明,当在50份聚醚多元醇中加入阻燃剂HHPCP与DMMP各10份时,阻燃聚氨酯硬泡的氧指数、抗压强度、密度达到最优,氧指数为24.5%,且总释放热由21.6 k J/g降低到16.9 k J/g。  相似文献   

7.
零ODP且无卤阻燃型聚氨酯硬泡的制备及性能研究   总被引:1,自引:0,他引:1  
以粉状生物发泡剂(PU-88)为零ODP发泡剂,甲基磷酸二甲酯(DMMP)为主要阻燃剂,三氧化二锑(Sb2O3)为辅助阻燃剂,制备了零ODP且无卤阻燃型硬质聚氨酯泡沫(RPUF)。利用氧指数仪研究了阻燃聚酯多元醇和添加型阻燃剂对聚氨酯硬泡阻燃性能的影响,并采用扫描电镜图分析了RPUF泡孔的大小及闭孔率。结果表明,随着阻燃剂(DMMP)用量的增加,氧指数(LOI)在上升到一定幅度后趋缓;当DMMP为泡沫总质量的25%时,可以制得力学性能、泡沫孔径和阻燃性能较佳平衡的阻燃泡沫材料。在该条件下,泡沫的压缩强度为0.408 MPa,泡沫平均孔径为70μm~150μm,闭孔率可达到96%,导热系数为0.0191W·(m·K)-1和LOI值达到32.1%;用DMMP与Sb2O3的复配使用效果更佳,LOI值达到32.6%。  相似文献   

8.
以非丁基氧化锡为催化剂,通过甲基膦酸二甲酯(DMMP)与乙二醇(EG)酯交换反应,制备了含磷多元醇(DMMP-EG)。将DMMP-EG与聚磷酸铵(APP)作为复合阻燃剂,制备了阻燃硬质聚氨酯泡沫(RPUF),探讨了复配阻燃剂对RPUF力学性能、阻燃性能、热稳定性的影响。结果表明:DMMP-EG与APP复配阻燃RPUF,在提高阻燃性能的同时,力学性能显著提高;当DMMP-EG添加15份、APP添加30份时,泡沫的力学性能最佳,与纯RPUF相比,压缩强度提高了1.25%,冲击强度提高了101.53%;此时,极限氧指数(LOI)提高至21.7%,烟密度等级为40。热重(TG)分析结果表明:在氮气气氛中,750℃时的残炭率较纯RPUF提高了612.56%。阻燃体系呈现以凝聚相为主的气相-凝聚相双相阻燃特点。  相似文献   

9.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、含溴环氧树脂等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同含溴环氧树脂添加比例的聚氨酯硬质泡沫材料的压缩强度和阻燃指数。结果表明,随着含溴环氧树脂添加量的增加,压缩强度出现先增加后减少的趋势。在含溴环氧树脂添加量占白料总质量10%时,压缩性能最佳;随着含溴环氧树脂添加量的增加,聚氨酯硬泡的极限氧指数呈上升趋势;高效阻燃剂用量可以使改性聚氨酯硬泡极限氧指数得到显著增加,达到30%以上。  相似文献   

10.
以聚醚多元醇、匀泡剂、开孔剂、催化剂、增塑剂和多亚甲基多苯基多异氰酸酯(PAPI)为原料制备了海管节点填充用全水发泡高密度开孔聚氨酯泡沫塑料。探讨了聚醚多元醇、匀泡剂与开孔剂、催化剂、增塑剂的选择和用量、自由发泡密度及过填充度对聚氨酯模压泡沫表观芯密度、泡沫状态、开孔率及压缩强度的影响。结果表明:聚醚多元醇C310 30份、聚醚R6350 30份、聚醚F330N 40份、匀泡剂S28 1份、开孔剂O-1 0.4份、催化剂C6 0.4份、催化剂C7 0.2份、催化剂C1 0.1份、增塑剂T2 10份、自由发泡密度为145 kg/m3、过填充度为20.7%时,制备的模压泡沫材料表观芯密度为175 kg/m3、开孔率91%、压缩强度2.2 MPa,能较好地满足海管节点填充的应用。  相似文献   

11.
高密度阻燃硬质聚氨酯泡沫塑料的研制   总被引:11,自引:1,他引:10  
以聚醚多元醇、PAPI、泡沫稳定剂、催化剂、阻燃剂、发泡剂和玻璃纤维等为原料 ,制得了一种高密度、高阻燃硬质聚氨酯泡沫结构材料。探讨了组合聚醚、发泡剂、泡沫稳定性、阻燃剂等的类型及用量对材料性能的影响 ,确定了材料的适宜配方。实验结果表明 ,2种阻燃剂复合使用 ,每 10 0g聚醚混合物加入 15g复合阻燃剂、7~ 9g发泡剂HCFC 14 1b、5 %玻璃纤维 ,制得的增强阻燃聚氨酯结构泡沫材料的性能为 :泡沫密度 30 0kg/m3 ,导热系数 0 .0 5W /(m·K) ,压缩强度 5 .4 8MPa ,吸水率 0 .16g/10 0cm2 ,氧指数 2 7~ 2 8,该材料的性能达到或超过了国外同类产品的水平。  相似文献   

12.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

13.
采用聚醚多元醇、多异氰酸酯、发泡剂以及可陶瓷化无机填料制备了可瓷化聚氨酯泡沫复合材料。研究了低熔点玻璃粉、蛭石粉、可膨胀石墨以及聚磷酸铵等无机组分对可瓷化聚氨酯泡沫复合材料性能的影响。结果表明,随着低熔点玻璃粉用量的增加,材料的密度增大,导热系数变大,压缩强度下降。在蛭石粉用量不超过6份时,材料在高温处理后的收缩率随着蛭石粉用量的增加而减小。在加入阻燃剂可膨胀石墨和聚磷酸铵总量为9份并且二者配比为1∶1时,材料的氧指数为33。通过实验优化,最终确定了无机填料的最佳配比。  相似文献   

14.
以2种不同黏度的乙烯基硅油复配物为基料、羟基硅油为发泡助剂、含氢硅油为交联剂、气相法二氧化硅为补强填料,添加铂催化剂、氮系无卤阻燃剂等制得液体硅橡胶阻燃泡沫材料,探讨了氮系无卤阻燃剂用量对硅橡胶泡沫材料物理性能、阻燃性能、泡孔形貌、热稳定性等的影响。结果表明,氮系无卤阻燃剂在硅橡胶泡沫材料体系中可充当抑制剂的作用,为制备样品提供更多的可操作时间;在用量相同的条件下,与氢氧化铝相比,采用氮系无卤阻燃剂更有利于制备密度低、压缩永久变形低、泡孔致密均匀的液体硅橡胶泡沫材料;随着氮系无卤阻燃剂用量从0增加到70份,硅橡胶泡沫材料的表观密度从0.240 g/cm3升至0.545 g/cm3,微孔材料硬度从6.9度升至50.5度后有所回落,拉伸强度从115.6 kPa升至576.0 kPa后有所回落;随着氮系无卤阻燃剂用量从10份增加到70份,氧指数从24.4%升高到31.0%,垂直燃烧等级由V-2级提升到V-1级并最终达到V-0级;随着氮系无卤阻燃剂用量的增加,硅橡胶泡沫材料的泡孔均匀性和热稳定性降低,600℃时残余质量分数降低,添加10份、30份和5...  相似文献   

15.
通过蓖麻油与甘油进行酯交换反应制备蓖麻油多元醇,并应用于聚氨酯阻燃硬泡的制备,研究了阻燃剂类型、添加量及蓖麻油多元醇的添加量对聚氨酯硬质泡沫(RPUF)综合性能的影响。结果表明,蓖麻油多元醇的添加量对阻燃RPUF氧指数影响不大,只是添加量大于50%时会导致泡沫收缩:添加不同阻燃剂后发现甲基磷酸二甲酯(DMMP)的阻燃效果好,DMMP合适用量为多元醇组分的20%~30%。  相似文献   

16.
超微细Mg(OH)2复合阻燃改性PP-R的研究   总被引:7,自引:0,他引:7  
研制了超微细Mg(OH)2和少量的十溴联苯醚复配阻燃剂与无规共聚聚丙烯(PP-R)的填充共混复合材料,研究了复配阻燃剂的用量和硅烷偶联剂对复合材料力学性能和阻燃性能的影响。结果表明,复配阻燃剂用量的增加对材料拉伸强度有较明显的影响,用量在10份左右时缺口冲击强度达到最大;用硅烷偶联剂处理的填料可改善复合材料的各项性能。复配阻燃剂显著提高了复合材料的阻燃性能,在用量为15份时,氧指数达到27%;用量超过20份,垂直燃烧性为FV-1级。微量发烟。  相似文献   

17.
采用高压发泡机制备了一系列以磷酸三(2?氯丙基)酯(TCPP)为阻燃剂的聚氨酯硬泡,讨论了TCPP用量对聚氨酯硬泡阻燃性能、压缩强度、导热系数及热水器能耗的影响.结果表明:加入TCPP的聚氨酯硬泡强度和高温下尺寸稳定性较未加入TCPP的泡沫差;随着TCPP用量的增加,硬泡导热系数上升,热水器能耗变大.当TCPP达到30...  相似文献   

18.
以聚醚多元醇、聚酯多元醇、聚异氰酸酯PAPI、泡沫稳定剂、复合催化剂、发泡剂HCFC-141b、复合阻燃剂等为原料,制备了用于建筑彩钢复合板的组合聚醚及改性聚异氰脲酸酯(PIR)泡沫。该组合聚醚具有较好的流动性及贮存稳定性;泡沫制品压缩强度高,导热系数低,阻燃性能好,尺寸稳定性佳,与钢板的粘接强度大,完全满足连续法彩钢复合板对短脱模时间、高泡沫强度、高阻燃性等方面的要求,产品性能与国外同类产品相当。同时讨论了多元醇、催化剂、阻燃剂等因素对泡沫性能的影响。  相似文献   

19.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、木粉等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同木粉添加比例的聚氨酯硬质泡沫材料的压缩强度、导热系数、极限氧指数和降解性能。结果表明,随着木粉添加量的增加,压缩强度呈现减少的趋势,聚氨酯硬质泡沫的导热系数变化不大,极限氧指数则呈下降趋势,降解性能随着木粉添加量的增加而逐渐提高。  相似文献   

20.
在聚酯多元醇中加入复合无机阻燃剂和复合催化剂,与多异氰酸酯反应制备硬质聚异氰脲酸酯(PIR)泡沫塑料。研究了无机阻燃剂和复合催化剂对泡沫的氧指数、尺寸稳定性等硬泡性能的影响。结果表明,当聚酯多元醇为100份,复合催化剂总量4.5份,且叔胺类催化剂与有机金属催化剂质量比为4∶1,复合阻燃剂总量20份,且Si O2与膨胀石墨质量比为1∶2,制得的PIR硬泡氧指数达到30%,导热系数0.019 W/(m·K),密度48 kg/m3,线性收缩率0.20%,压缩强度185 k Pa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号