首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
In all experiments reported to date the measured values of the ac quantized Hall resistances RH varied with the frequency of the applied current, and differed significantly from the dc values of RH, making it difficult to use the ac quantum Hall effect as an absolute impedance standard. We analyze the effects due to the large capacitances-to-shields existing in the sample probes on measurements of RH to see if this is the source of the problem. Equivalent electrical circuits are utilized; they contain capacitances and leakage resistances to the sample probe shields, longitudinal resistances within the quantized Hall effect devices, and multiple connections to the devices. The algebraic solutions for the RH values in these circuits reveal large out-of-phase contributions to the quantized Hall voltages VH that would make it difficult to do accurate measurements with high precision ac bridges. These large out-of-phase contributions could introduce the linear frequency dependences observed in previous RH measurements. We predict, however, that quadruple-series connections to the quantum Hall devices yield only small out-of-phase contributions to VH which may allow accurate measurements of the quantity RHRx, where Rx is the longitudinal resistance along the device.  相似文献   

2.
We analyze the effects of the large capacitances-to-shields existing in all sample probes on measurements of the ac quantized Hall resistance RH. The object of this analysis is to investigate how these capacitances affect the observed frequency dependence of RH. Our goal is to see if there is some way to eliminate or minimize this significant frequency dependence, and thereby realize an intrinsic ac quantized Hall resistance standard. Equivalent electrical circuits are used in this analysis, with circuit components consisting of: capacitances and leakage resistances to the sample probe shields; inductances and resistances of the sample probe leads; quantized Hall resistances, longitudinal resistances, and voltage generators within the quantum Hall effect device; and multiple connections to the device. We derive exact algebraic equations for the measured RH values expressed in terms of the circuit components. Only two circuits (with single-series “offset” and quadruple-series connections) appear to meet our desired goals of measuring both RH and the longitudinal resistance Rx in the same cool-down for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less. These two circuits will be further considered in a future paper in which the effects of wire-to-wire capacitances are also included in the analysis.  相似文献   

3.
Many ac quantized Hall resistance experiments have measured significant values of ac longitudinal resistances under temperature and magnetic field conditions in which the dc longitudinal resistance values were negligible. We investigate the effect of non-vanishing ac longitudinal resistances on measurements of the quantized Hall resistances by analyzing equivalent circuits of quantized Hall effect resistors. These circuits are based on ones reported previously for dc quantized Hall resistors, but use additional resistors to represent longitudinal resistances. For simplification, no capacitances or inductances are included in the circuits. The analysis is performed for many combinations of multi-series connections to quantum Hall effect devices. The exact algebraic solutions for the quantized Hall resistances under these conditions of finite ac longitudinal resistances provide corrections to the measured quantized Hall resistances, but these corrections do not account for the frequency dependences of the ac quantized Hall resistances reported in the literature.  相似文献   

4.
Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance.  相似文献   

5.
基于砷化镓的量子霍尔电阻自然基准需要在约1.5K的温度条件下运行,存在成本高和操作复杂等诸多问题。随着石墨烯材料独特电性能的发现,因其可以在约4.2K的温度复现量子霍尔效应而成为制作量子霍尔电阻的理想材料。各国专家围绕石墨烯在电学计量领域的应用开展了大量的工作,取得了可喜的进展。对当前石墨烯在量子霍尔电阻中应用的进展和存在的问题进行了总结,并对未来的发展进行了展望。  相似文献   

6.
We present detailed measurements of the temperature dependence of the Hall and longitudinal resistances on a quantum Hall device [(GaAs(7)] which has been used as a resistance standard at NIST. We find a simple power law relationship between the change in Hall resistance and the longitudinal resistance as the temperature is varied between 1.4 K and 36 K. This power law holds over seven orders of magnitude change in the Hall resistance. We fit the temperature dependence above about 4 K to thermal activation, and extract the energy gap and the effective g-factor.  相似文献   

7.
When large currents are passed through a high-quality quantized Hall resistance device the voltage drop along the device is observed to assume discrete, quantized states if the voltage is plotted versus the magnetic field. These quantized dissipative voltage states are interpreted as occurring when electrons are excited to higher Landau levels and then return to the original Landau level. The quantization is found to be, in general, both a function of magnetic field and current. Consequently, it can be more difficult to verify and determine dissipative voltage quantization than previously suspected.  相似文献   

8.
This report provides the background for and summarizes the main results of the 18th meeting of the Consultative Committee on Electricity (CCE) of the International Committee of Weights and Measures (CIPM) held in September 1988. Also included are the most important implications of these results. The principal recommendations originating from the meeting, which were subsequently adopted by the CIPM, establish new international reference standards of voltage and resistance based on the Josephson effect and the quantum Hall effect, respectively. The new standards, which are to come into effect starting January 1, 1990, will result in improved uniformity of electrical measurements worldwide and their consistency with the International System of Units or SI. To implement the CIPM recommendations in the U.S. requires that, on January 1, 1990, the value of the U.S. representation of the volt be increased by about 9.26 parts per million (ppm) and the value of the U.S. representation of the ohm be increased by about 1.69 ppm. The resulting increases in the U.S. representations of the ampere and watt will be about 7.57 ppm and 16.84 ppm, respectively. The CCE also recommended a particular method, affirmed by the CIPM, of reporting calibration results obtained with the new reference standards that is to be used by all national standards laboratories.  相似文献   

9.
Analytic solutions are obtained for the internal capacitances, kinetic inductances, and magnetic inductances of quantum Hall effect devices to investigate whether or not the quantized Hall resistance is the only intrinsic impedance of importance in measurements of the ac quantum Hall effect. The internal capacitances and inductances are obtained by using the results of Cage and Lavine, who determined the current and potential distributions across the widths of quantum Hall effect devices. These intrinsic capacitances and inductances produce small out-of-phase impedance corrections to the in-phase quantized Hall resistance and to the in-phase longitudinal resistance.  相似文献   

10.
Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.  相似文献   

11.
报告了自1990年以来通过与量子化霍尔电阻比对考核的国家直流电阻(实物)基准的长期漂移率及偏差。结果表明2001年以来,国家直流电阻(实物)副基准的漂移率为-0.0551μΩ/a,主基准的漂移率为-0.0808μΩ/a;2006年10月25日,国家直流电阻(实物)基准复现的电阻量值较量子化霍尔电阻的相对偏差为+0.677mm,预计2007年1月1日需要修正-0.69μΩ/a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号