共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
通过对苏州中润广场主楼弹塑性时程分析,验证结构是否满足大震不倒的设防水准要求,寻找结构薄弱部位和薄弱构件,提出相应的加强措施;同时,评价结构在大震作用下的力学性能,研究罕遇地震作用下主要构件的损伤和屈服情况,并对损伤程度做出性能评价,以指导结构设计。此分析过程分为施工过程计算、振型及周期计算、弹塑性时程分析。计算结果表明,在给定地震波的罕遇地震作用下,结构整体受力性能良好,能满足罕遇地震下的抗震性能目标。 相似文献
4.
5.
6.
本文介绍了南京龙江新城市广场办公区域,通过对空调能耗、投资等经济技术指标优劣性的分析,选择适宜的办公空调系统。 相似文献
7.
弹塑性动力时程分析概述 总被引:1,自引:0,他引:1
本文简要介绍了弹塑性动力时程分析的目的、原理和方法,对目前弹塑性动力时程分析软件的基本假定、模型、算法等方面作了扼要的描述和比较,并对上述软件的使用作出了建议。 相似文献
8.
9.
10.
11.
我国现行的一些有关高层、超高层建筑结构设计规范,如《建筑抗震设计规范》(GBJ11-1989)、《钢筋砼高层建筑结构设计与施工规程》(JGJ3-1991)、《高层民用建筑钢结构技术规程》(JGJ1999-1998)等都对高层建筑结构设计提出了在罕遇地震作用下薄弱层(部件)抗震变形验算要求。正在修订中的抗震设计规范对高层、超高层结构的弹塑性性能要求更为严格。就高层、超高层结构设计而言,迫切需要有简单、实用、而且商品化程度高的弹塑性动力时程分析软件,但到目前为止,国内外在弹塑性动力时程分析软件开发方面,与工程实际需求还有较大距离。近… 相似文献
12.
上海世博会中国馆东方之冠建筑造型和结构体系独特,结构为复杂大跨大悬挑钢-混凝土混合结构,主体结构为四个混凝土筒体,上部楼屋面采用混凝土梁板体系、型钢梁-混凝土板梁板体系和钢桁架梁-混凝土板梁板体系。由于上部结构悬挑较大,结构1阶振型为扭转振型,不满足现行建筑抗震设计规范的要求。采用NosaCAD2005有限元程序建立整体结构分析模型,压弯构件采用纤维截面模型,墙体采用非线性平板壳单元,以反映构件非线性复杂受力情况。通过7度多遇和7度罕遇烈度下的弹塑性时程分析,研究了该结构的变形、内力、破坏情况的发展历程。计算结果表明,小震情况下,结构构件未出现损坏;大震情况下,结构最大层间位移角满足1/100的限值要求,筒体构件损坏顺序和分布较为合理,能在一定程度上耗散地震输入能量。出现塑性铰的杆件未超过极限承载能力,结构可以满足"小震不坏"、"大震不倒"的抗震设防要求。最后根据构件的受力或损坏情况,给出了设计改进建议。 相似文献
13.
本文以松花江特大桥为工程背景,根据现有的抗震非线性理论研究,弯矩-曲率滞回特性曲线可采用Takeda(武田)三线性模型,并给出了8度区罕遇地震下的弹塑性时程的反应分析,对罕遇地震下的抗震能力进行了评估。 相似文献
14.
采用非线性程序Perform-3D进行某超高层结构弹塑性时程分析,48层以下为框架-核心筒结构,其上为钢框架-核心筒结构,每层剪力墙筒体外墙外飘2m左右厚500mm的厚板,用扁梁将外围柱和剪力墙筒体连接。根据结构层间位移角、楼层剪力、构件耗能、钢材屈服和剪力墙损伤等计算结果,找出结构薄弱位置,分析罕遇地震下结构的抗震性能,为设计提供依据。 相似文献
15.
首先简单描述了弹塑性时程分析方法,然后较为详尽地介绍了时程分析方法的基本理论,最后用NosaCAD有限元程序建立一个框架整体结构分析模型,通过7度罕遇烈度下的弹塑性时程分析,研究了该结构的变形、内力、破坏情况的发展历程. 相似文献
16.
17.
本文通过对西安某框架结构教学楼采用弹塑性时程分析方法进行了罕遇地震作用下结构变形分析计算,结果表明,随着计算机技术的迅速发展,弹塑性时程分析在工程中的应用已成为可能.而且是简便可行的。 相似文献
18.
本文以一超高层连体结构实际工程为例,采用Midas Building有限元软件对该结构进行详细弹塑性时程计算分析,采用了单体和连体2种计算模型。由计算结果知,该结构塔楼单体模型最大弹塑性层间位移角为1/102,连体为1/135,均满足规范要求的最低标准1/100。并对该工程结构构件进行抗震性能评价,2种计算模型剪力墙、框架柱、连接体构件均未屈服,连梁与框架梁出现塑性铰,但均未达到CP状态。从2种计算模型损伤结果来看,该连体结构应采用2种计算模型的包络进行设计。 相似文献
19.
20.
上海嘉里静安综合发展项目南塔楼为超高层型钢混凝土框架—钢筋混凝土筒体结构.塔楼设有斜柱和加强层并有较大的立面收进,为立面规则性超限结构.文中采用NosaCAD有限元程序建立整体结构分析模型,通过7度多遇和7度罕遇烈度下的弹塑性时程分析,研究结构的变形、内力、破坏情况的发展历程.计算结果表明,小震情况下,结构构件未出现损坏.大震情况下,框架部分出现塑性铰的杆件未达到极限承载能力,筒体部分构件损坏顺序和分布较为合理,能在一定程度上耗散地震输入能量.结构最大层间位移角满足1/100的限值要求.结构可以满足小震不坏大震不倒的设防要求. 相似文献