首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data clustering is a process of extracting similar groups of the underlying data whose labels are hidden. This paper describes different approaches for solving data clustering problem. Particle swarm optimization (PSO) has been recently used to address clustering task. An overview of PSO-based clustering approaches is presented in this paper. These approaches mimic the behavior of biological swarms seeking food located in different places. Best locations for finding food are in dense areas and in regions far enough from others. PSO-based clustering approaches are evaluated using different data sets. Experimental results indicate that these approaches outperform K-means, K-harmonic means, and fuzzy c-means clustering algorithms.  相似文献   

2.
To cluster web documents, all of which have the same name entities, we attempted to use existing clustering algorithms such as K-means and spectral clustering. Unexpectedly, it turned out that these algorithms are not effective to cluster web documents. According to our intensive investigation, we found that clustering such web pages is more complicated because (1) the number of clusters (known as ground truth) is larger than two or three clusters as in general clustering problems and (2) clusters in the data set have extremely skewed distributions of cluster sizes. To overcome the aforementioned problem, in this paper, we propose an effective clustering algorithm to boost up the accuracy of K-means and spectral clustering algorithms. In particular, to deal with skewed distributions of cluster sizes, our algorithm performs both bisection and merge steps based on normalized cuts of the similarity graph G to correctly cluster web documents. Our experimental results show that our algorithm improves the performance by approximately 56% compared to spectral bisection and 36% compared to K-means.  相似文献   

3.
Modern day computers cannot provide optimal solution to the clustering problem. There are many clustering algorithms that attempt to provide an approximation of the optimal solution. These clustering techniques can be broadly classified into two categories. The techniques from first category directly assign objects to clusters and then analyze the resulting clusters. The methods from second category adjust representations of clusters and then determine the object assignments. In terms of disciplines, these techniques can be classified as statistical, genetic algorithms based, and neural network based. This paper reports the results of experiments comparing five different approaches: hierarchical grouping, object-based genetic algorithms, cluster-based genetic algorithms, Kohonen neural networks, and K-means method. The comparisons consist of the time requirements and within-group errors. The theoretical analyses were tested for clustering of highway sections and supermarket customers. All the techniques were applied to clustering of highway sections. The hierarchical grouping and genetic algorithms approaches were computationally infeasible for clustering a larger set of supermarket customers. Hence only Kohonen neural networks and K-means techniques were applied to the second set to confirm some of the results from previous experiments.  相似文献   

4.

In the fields of pattern recognition and machine learning, the use of data preprocessing algorithms has been increasing in recent years to achieve high classification performance. In particular, it has become inevitable to use the data preprocessing method prior to classification algorithms in classifying medical datasets with the nonlinear and imbalanced data distribution. In this study, a new data preprocessing method has been proposed for the classification of Parkinson, hepatitis, Pima Indians, single proton emission computed tomography (SPECT) heart, and thoracic surgery medical datasets with the nonlinear and imbalanced data distribution. These datasets were taken from UCI machine learning repository. The proposed data preprocessing method consists of three steps. In the first step, the cluster centers of each attribute were calculated using k-means, fuzzy c-means, and mean shift clustering algorithms in medical datasets including Parkinson, hepatitis, Pima Indians, SPECT heart, and thoracic surgery medical datasets. In the second step, the absolute differences between the data in each attribute and the cluster centers are calculated, and then, the average of these differences is calculated for each attribute. In the final step, the weighting coefficients are calculated by dividing the mean value of the difference to the cluster centers, and then, weighting is performed by multiplying the obtained weight coefficients by the attribute values in the dataset. Three different attribute weighting methods have been proposed: (1) similarity-based attribute weighting in k-means clustering, (2) similarity-based attribute weighting in fuzzy c-means clustering, and (3) similarity-based attribute weighting in mean shift clustering. In this paper, we aimed to aggregate the data in each class together with the proposed attribute weighting methods and to reduce the variance value within the class. Thus, by reducing the value of variance in each class, we have put together the data in each class and at the same time, we have further increased the discrimination between the classes. To compare with other methods in the literature, the random subsampling has been used to handle the imbalanced dataset classification. After attribute weighting process, four classification algorithms including linear discriminant analysis, k-nearest neighbor classifier, support vector machine, and random forest classifier have been used to classify imbalanced medical datasets. To evaluate the performance of the proposed models, the classification accuracy, precision, recall, area under the ROC curve, κ value, and F-measure have been used. In the training and testing of the classifier models, three different methods including the 50–50% train–test holdout, the 60–40% train–test holdout, and tenfold cross-validation have been used. The experimental results have shown that the proposed attribute weighting methods have obtained higher classification performance than random subsampling method in the handling of classifying of the imbalanced medical datasets.

  相似文献   

5.
Clustering is a popular data analysis and data mining technique. A popular technique for clustering is based on k-means such that the data is partitioned into K clusters. However, the k-means algorithm highly depends on the initial state and converges to local optimum solution. This paper presents a new hybrid evolutionary algorithm to solve nonlinear partitional clustering problem. The proposed hybrid evolutionary algorithm is the combination of FAPSO (fuzzy adaptive particle swarm optimization), ACO (ant colony optimization) and k-means algorithms, called FAPSO-ACO–K, which can find better cluster partition. The performance of the proposed algorithm is evaluated through several benchmark data sets. The simulation results show that the performance of the proposed algorithm is better than other algorithms such as PSO, ACO, simulated annealing (SA), combination of PSO and SA (PSO–SA), combination of ACO and SA (ACO–SA), combination of PSO and ACO (PSO–ACO), genetic algorithm (GA), Tabu search (TS), honey bee mating optimization (HBMO) and k-means for partitional clustering problem.  相似文献   

6.
Semi-supervised model-based document clustering: A comparative study   总被引:4,自引:0,他引:4  
Semi-supervised learning has become an attractive methodology for improving classification models and is often viewed as using unlabeled data to aid supervised learning. However, it can also be viewed as using labeled data to help clustering, namely, semi-supervised clustering. Viewing semi-supervised learning from a clustering angle is useful in practical situations when the set of labels available in labeled data are not complete, i.e., unlabeled data contain new classes that are not present in labeled data. This paper analyzes several multinomial model-based semi-supervised document clustering methods under a principled model-based clustering framework. The framework naturally leads to a deterministic annealing extension of existing semi-supervised clustering approaches. We compare three (slightly) different semi-supervised approaches for clustering documents: Seeded damnl, Constrained damnl, and Feedback-based damnl, where damnl stands for multinomial model-based deterministic annealing algorithm. The first two are extensions of the seeded k-means and constrained k-means algorithms studied by Basu et al. (2002); the last one is motivated by Cohn et al. (2003). Through empirical experiments on text datasets, we show that: (a) deterministic annealing can often significantly improve the performance of semi-supervised clustering; (b) the constrained approach is the best when available labels are complete whereas the feedback-based approach excels when available labels are incomplete. Editor: Andrew Moore  相似文献   

7.
Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm.  相似文献   

8.
The k-means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and are inefficient for solving clustering problems in large datasets. Recently, incremental approaches have been developed to resolve difficulties with the choice of starting points. The global k-means and the modified global k-means algorithms are based on such an approach. They iteratively add one cluster center at a time. Numerical experiments show that these algorithms considerably improve the k-means algorithm. However, they require storing the whole affinity matrix or computing this matrix at each iteration. This makes both algorithms time consuming and memory demanding for clustering even moderately large datasets. In this paper, a new version of the modified global k-means algorithm is proposed. We introduce an auxiliary cluster function to generate a set of starting points lying in different parts of the dataset. We exploit information gathered in previous iterations of the incremental algorithm to eliminate the need of computing or storing the whole affinity matrix and thereby to reduce computational effort and memory usage. Results of numerical experiments on six standard datasets demonstrate that the new algorithm is more efficient than the global and the modified global k-means algorithms.  相似文献   

9.
In recent years, there have been numerous attempts to extend the k-means clustering protocol for single database to a distributed multiple database setting and meanwhile keep privacy of each data site. Current solutions for (whether two or more) multiparty k-means clustering, built on one or more secure two-party computation algorithms, are not equally contributory, in other words, each party does not equally contribute to k-means clustering. This may lead a perfidious attack where a party who learns the outcome prior to other parties tells a lie of the outcome to other parties. In this paper, we present an equally contributory multiparty k-means clustering protocol for vertically partitioned data, in which each party equally contributes to k-means clustering. Our protocol is built on ElGamal's encryption scheme, Jakobsson and Juels's plaintext equivalence test protocol, and mix networks, and protects privacy in terms that each iteration of k-means clustering can be performed without revealing the intermediate values.  相似文献   

10.
This paper presents an idea of clustering resolution. On the basis of the idea, fuzzy clustering algorithms based on resolution are deduced, which naturally comprise a set of clustering algorithms. Thus, c-means algorithm and fuzzy c-means algorithms are actually special examples in the set. As an application for codebook design in image compression based on vector quantization, fuzzy clustering algorithms based on multiresolution are developed, which are almost prior to conventional algorithms in all aspects.  相似文献   

11.
Harmony K-means algorithm for document clustering   总被引:2,自引:0,他引:2  
Fast and high quality document clustering is a crucial task in organizing information, search engine results, enhancing web crawling, and information retrieval or filtering. Recent studies have shown that the most commonly used partition-based clustering algorithm, the K-means algorithm, is more suitable for large datasets. However, the K-means algorithm can generate a local optimal solution. In this paper we propose a novel Harmony K-means Algorithm (HKA) that deals with document clustering based on Harmony Search (HS) optimization method. It is proved by means of finite Markov chain theory that the HKA converges to the global optimum. To demonstrate the effectiveness and speed of HKA, we have applied HKA algorithms on some standard datasets. We also compare the HKA with other meta-heuristic and model-based document clustering approaches. Experimental results reveal that the HKA algorithm converges to the best known optimum faster than other methods and the quality of clusters are comparable.  相似文献   

12.
In this paper, we define I-fuzzy partitions (or intuitionistic fuzzy partitions as called by Atanassov or interval-valued fuzzy partitions). As our ultimate goal is to compare the results of standard fuzzy clustering algorithms (e.g. fuzzy c-means), we define a method to construct them from a set of fuzzy clusters obtained from several executions of fuzzy c-means. From a practical point of view, the approach presented here tries to solve the difficulty of comparing the results of fuzzy clustering methods and, in particular, the difficulty of finding the global optimal.  相似文献   

13.
A class-consistent k-means clustering algorithm (CCKM) and its hierarchical extension (Hierarchical CCKM) are presented for generating discriminative visual words for recognition problems. In addition to using the labels of training data themselves, we associate a class label with each cluster center to enforce discriminability in the resulting visual words. Our algorithms encourage data points from the same class to be assigned to the same visual word, and those from different classes to be assigned to different visual words. More specifically, we introduce a class consistency term in the clustering process which penalizes assignment of data points from different classes to the same cluster. The optimization process is efficient and bounded by the complexity of k-means clustering. A very efficient and discriminative tree classifier can be learned for various recognition tasks via the Hierarchical CCKM. The effectiveness of the proposed algorithms is validated on two public face datasets and four benchmark action datasets.  相似文献   

14.
Partitional clustering is a common approach to cluster analysis. Although many algorithms have been proposed, partitional clustering remains a challenging problem with respect to the reliability and efficiency of recovering high quality solutions in terms of its criterion functions. In this paper, we propose a niching genetic k-means algorithm (NGKA) for partitional clustering, which aims at reliably and efficiently identifying high quality solutions in terms of the sum of squared errors criterion. Within the NGKA, we design a niching method, which encourages mating among similar clustering solutions while allowing for some competitions among dissimilar solutions, and integrate it into a genetic algorithm to prevent premature convergence during the evolutionary clustering search. Further, we incorporate one step of k-means operation into the regeneration steps of the resulted niching genetic algorithm to improve its computational efficiency. The proposed algorithm was applied to cluster both simulated data and gene expression data and compared with previous work. Experimental results clear show that the NGKA is an effective clustering algorithm and outperforms two other genetic algorithm based clustering methods implemented for comparison.  相似文献   

15.
Semi-supervised graph clustering: a kernel approach   总被引:6,自引:0,他引:6  
Semi-supervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vector-based and graph-based approaches. We first show that a recently-proposed objective function for semi-supervised clustering based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of constraint penalty functions, can be expressed as a special case of the weighted kernel k-means objective (Dhillon et al., in Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical connection between weighted kernel k-means and several graph clustering objectives enables us to perform semi-supervised clustering of data given either as vectors or as a graph. For graph data, this result leads to algorithms for optimizing several new semi-supervised graph clustering objectives. For vector data, the kernel approach also enables us to find clusters with non-linear boundaries in the input data space. Furthermore, we show that recent work on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2003) may be viewed as a special case of our formulation. We empirically show that our algorithm is able to outperform current state-of-the-art semi-supervised algorithms on both vector-based and graph-based data sets.  相似文献   

16.
This paper presents two new types of clustering algorithms by using tolerance vector called tolerant fuzzy c-means clustering and tolerant possibilistic clustering. In the proposed algorithms, the new concept of tolerance vector plays very important role. The original concept is developed to handle data flexibly, that is, a tolerance vector attributes not only to each data but also each cluster. Using the new concept, we can consider the influence of clusters to each data by the tolerance. First, the new concept of tolerance is introduced into optimization problems. Second, the optimization problems with tolerance are solved by using Karush–Kuhn–Tucker conditions. Third, new clustering algorithms are constructed based on the optimal solutions for clustering. Finally, the effectiveness of the proposed algorithms is verified through numerical examples and its fuzzy classification function.  相似文献   

17.
Clustering is a very powerful data mining technique for topic discovery from text documents. The partitional clustering algorithms, such as the family of k-means, are reported performing well on document clustering. They treat the clustering problem as an optimization process of grouping documents into k clusters so that a particular criterion function is minimized or maximized. Usually, the cosine function is used to measure the similarity between two documents in the criterion function, but it may not work well when the clusters are not well separated. To solve this problem, we applied the concepts of neighbors and link, introduced in [S. Guha, R. Rastogi, K. Shim, ROCK: a robust clustering algorithm for categorical attributes, Information Systems 25 (5) (2000) 345–366], to document clustering. If two documents are similar enough, they are considered as neighbors of each other. And the link between two documents represents the number of their common neighbors. Instead of just considering the pairwise similarity, the neighbors and link involve the global information into the measurement of the closeness of two documents. In this paper, we propose to use the neighbors and link for the family of k-means algorithms in three aspects: a new method to select initial cluster centroids based on the ranks of candidate documents; a new similarity measure which uses a combination of the cosine and link functions; and a new heuristic function for selecting a cluster to split based on the neighbors of the cluster centroids. Our experimental results on real-life data sets demonstrated that our proposed methods can significantly improve the performance of document clustering in terms of accuracy without increasing the execution time much.  相似文献   

18.
Fast and exact out-of-core and distributed k-means clustering   总被引:1,自引:2,他引:1  
Clustering has been one of the most widely studied topics in data mining and k-means clustering has been one of the popular clustering algorithms. K-means requires several passes on the entire dataset, which can make it very expensive for large disk-resident datasets. In view of this, a lot of work has been done on various approximate versions of k-means, which require only one or a small number of passes on the entire dataset.In this paper, we present a new algorithm, called fast and exact k-means clustering (FEKM), which typically requires only one or a small number of passes on the entire dataset and provably produces the same cluster centres as reported by the original k-means algorithm. The algorithm uses sampling to create initial cluster centres and then takes one or more passes over the entire dataset to adjust these cluster centres. We provide theoretical analysis to show that the cluster centres thus reported are the same as the ones computed by the original k-means algorithm. Experimental results from a number of real and synthetic datasets show speedup between a factor of 2 and 4.5, as compared with k-means.This paper also describes and evaluates a distributed version of FEKM, which we refer to as DFEKM. This algorithm is suitable for analysing data that is distributed across loosely coupled machines. Unlike the previous work in this area, DFEKM provably produces the same results as the original k-means algorithm. Our experimental results show that DFEKM is clearly better than two other possible options for exact clustering on distributed data, which are down loading all data and running sequential k-means or running parallel k-means on a loosely coupled configuration. Moreover, even in a tightly coupled environment, DFEKM can outperform parallel k-means if there is a significant load imbalance. Ruoming Jin is currently an assistant professor in the Computer Science Department at Kent State University. He received a BE and a ME degree in computer engineering from Beihang University (BUAA), China in 1996 and 1999, respectively. He earned his MS degree in computer science from University of Delaware in 2001, and his Ph.D. degree in computer science from the Ohio State University in 2005. His research interests include data mining, databases, processing of streaming data, bioinformatics, and high performance computing. He has published more than 30 papers in these areas. He is a member of ACM and SIGKDD. Anjan Goswami studied robotics at the Indian Institute of Technology at Kanpur. While working with IBM, he was interested in studying computer science. He then obtained a masters degree from the University of South Florida, where he worked on computer vision problems. He then transferred to the PhD program in computer science at OSU, where he did a Masters thesis on efficient clustering algorithms for massive, distributed and streaming data. On successful completion of this, he decided to join a web-service-provider company to do research in designing and developing high-performance search solutions for very large structured data. Anjan' favourite recreations are studying and predicting technology trends, nature photography, hiking, literature and soccer. Gagan Agrawal is an Associate Professor of Computer Science and Engineering at the Ohio State University. He received his B.Tech degree from Indian Institute of Technology, Kanpur, in 1991, and M.S. and Ph.D degrees from University of Maryland, College Park, in 1994 and 1996, respectively. His research interests include parallel and distributed computing, compilers, data mining, grid computing, and data integration. He has published more than 110 refereed papers in these areas. He is a member of ACM and IEEE Computer Society. He received a National Science Foundation CAREER award in 1998.  相似文献   

19.
目的 高光谱图像波段数目巨大,导致在解译及分类过程中出现“维数灾难”的现象。针对该问题,在K-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法。方法 首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入K-means聚类目标函数,通过最小化目标函数得到最优分类结果。结果 为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统K-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统K-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92.20%和82.96%, K-means算法的总精度分别为83.39%和67.06%,较K-means算法增长8.81%和15.9%。结论 提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。  相似文献   

20.
数值型和分类型混合数据的模糊K-Prototypes聚类算法   总被引:15,自引:0,他引:15  
陈宁  陈安  周龙骧 《软件学报》2001,12(8):1107-1119
由于数据库经常同时包含数值型和分类型的属性,因此研究能够处理混合型数据的聚类算法无疑是很重要的.讨论了混合型数据的聚类问题,提出了一种模糊K-prototypes算法.该算法融合了K-means和K-modes对数值型和分类型数据的处理方法,能够处理混合类型的数据.模糊技术体现聚类的边界特征,更适合处理含有噪声和缺失数据的数据库.实验结果显示,模糊算法比相应的确定算法得到的结果准确度高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号