首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
某污水处理厂设计规模为5 000 m~3/d,深度处理采用混凝沉淀/转盘过滤/臭氧氧化工艺,混凝沉淀/转盘过滤工艺对COD的去除率稳定在20%,但单独臭氧氧化对COD去除效果不佳,出水色度升高。当辅以投加H_2O_2时,通过羟基自由基(·OH)的高级氧化可确保对COD的稳定去除,使出水水质达标。改造工程总投资为538.68万元,新增总水处理成本为1.03元/m~3。  相似文献   

2.
采用混凝预处理Fenton氧化法处理聚乙烯醇(PVA)模拟废水,并探究p H值、H_2O_2投加量、FeSO_4·7H_2O投加量、H_2O_2投加次数及反应时间对PVA及COD处理率的影响。试验表明:在一定程度上提高反应时间、H_2O_2投加次数可以提高PVA及COD的去除率;同时确定反应的最佳p H值为3左右;H_2O_2/COD最佳投加量为3左右,后确定Fe SO_2·7H_2O投投加量为40g/L最佳。通过正交试验分析,以pH值、H_2O_2投加量、FeSO_4·7H_2O投加量、反应时间为主要因素建立4因素3水平的正交试验。分析结果表明,反应时间对去除率的影响最大。  相似文献   

3.
成型聚铝污泥对阴离子具有良好的亲和吸附能力,可作为水处理领域的吸附剂。以印染废水尾水为处理对象,采用成型聚铝污泥吸附经Fenton氧化后的尾水,在pH值=4.0、FeSO_4·7H_2O用量为56 mg/L、H_2O_2用量为0.2 m L/L、反应时间为120 min、聚铝污泥吸附剂投加量为20 g/L、进水COD和TP分别为114和1.85 mg/L的条件下,出水COD和TP分别为44、0.46 mg/L。分别用酸碱和Fenton技术对吸附饱和的聚铝污泥进行再生试验,在pH值=3.0、FeSO_4·7H_2O投加量为40 mg/L的条件下,当H_2O_2投加量为0.3 m L/L时,Fenton氧化对聚铝污泥的再生率几乎可达到100%。  相似文献   

4.
以包头某焦化厂的焦化废水经生化、超滤、反渗透系统处理后产生的反渗透浓水为研究对象,分析了改性活性炭/H_2O_2催化氧化法对RO浓水的处理效果及影响因素。试验结果表明,在初始pH值为原水pH值、改性活性炭与H_2O_2的质量比为1. 0、H_2O_2投加量为120 mg/L、反应时间为1 h的条件下,RO浓水经改性活性炭/H_2O_2处理后,COD、色度、A_(254)分别由103 mg/L、103. 3倍、1. 021降至44 mg/L、39倍、0. 309,去除率分别为57. 3%、62. 2%、69. 74%,出水COD满足《炼焦化学工业污染物排放标准》(GB 16171—2012)中新建企业水污染物直接排放标准。  相似文献   

5.
采用Fenton法对高浓度有机综合废水的二级出水进行深度处理,通过单因素试验和正交试验研究了初始pH值、H_2O_2投加量、Fe~(2+)/H_2O_2值(物质的量之比)及反应时间等对处理效果的影响。结果表明,Fenton法处理二级出水的最佳条件如下:初始pH值为4、H_2O_2投加量为1.188 mol/L、Fe~(2+)/H_2O_2值为0.025、反应时间为60 min,在此条件下出水COD60 mg/L,对COD的去除率可达到87%以上,满足《污水综合排放标准》(GB 8978—1996)的一级标准。  相似文献   

6.
Fenton氧化工艺深度处理酒精废水的试验研究   总被引:2,自引:0,他引:2  
采用Fenton氧化工艺深度处理酒精废水,考察了其对COD的去除效果及影响因素,并采用GC/MS手段分析了对有机物的去除机理。结果表明,H2O2投量对COD的去除效果影响最大,其次是Fe2+/H2O2值,再次是pH和反应时间;当pH值为3.0、反应时间为30 min、Fe2+/H2O2=1∶1、H2O2投量为660 mg/L时,对COD的去除效果最佳,去除率高达95%左右。Fenton氧化法可有效地将难降解的大分子有机物氧化分解为小分子有机物;经Fenton试剂处理后,醇类、酮类、酚类和环烃类有机物含量明显减少,而酸类、酯类和醛类有机物含量显著增加。  相似文献   

7.
自制3种多金属氧化物负载催化剂,即MnO-CuO-FeO/活性炭、MnO-CuO-FeO/Al_2O_3、MnO-CuO-CeO/Al_2O_3,用于催化臭氧氧化处理苯酚废水,对其影响因素进行了研究,并与单独臭氧氧化工艺进行对比。结果表明,在pH值为9. 53、臭氧投加量为14. 8 mg/L、催化剂投加量为7. 5 g/L的条件下,MnO-CuO-FeO/活性炭催化剂催化臭氧氧化工艺对苯酚的去除效果最佳,去除率高达94. 8%,COD去除率为53. 4%,连续使用6次后,苯酚去除率仍可达到81. 6%。通过加入羟基自由基抑制剂叔丁醇的试验可知,羟基自由基对苯酚的降解起主要作用。  相似文献   

8.
高效硝化耦合臭氧催化氧化深度处理石化废水中试   总被引:1,自引:0,他引:1  
采用高效硝化(HENT)耦合臭氧催化氧化技术深度处理某石化公司丙烯腈废水。中试结果表明,HENT处理效果良好,在进水氨氮为88~286 mg/L的条件下,出水氨氮平均为0.53mg/L,去除率为99.72%。COD主要通过臭氧催化氧化和BAF来去除,在进水COD平均浓度为259 mg/L的条件下,出水平均浓度可降至57 mg/L,对COD的平均去除率达到了75.6%;随着BAF运行的稳定,当进水COD200 mg/L时,出水COD可降至40 mg/L以下。另外,高效硝化耦合臭氧催化氧化技术对总氰化物、SS、硫化物和总磷也有一定的去除效果。  相似文献   

9.
多相催化臭氧氧化法处理甲萘酚废水   总被引:1,自引:0,他引:1  
以活性炭为载体、钾为助催化剂,采用浸渍法制备了Cu-K/AC催化剂,并考察了该催化剂催化臭氧氧化处理甲萘酚废水的效能.结果表明,当甲萘酚废水的COD为3 000 mg/L、含油量为120 mg/L时,在室温、pH=3、反应时间为120 min、催化剂投量为100 g/L、臭氧流量为5.2mg/min的条件下,催化臭氧氧化对COD及油类物质的去除率分别达到了93%和98%;臭氧氧化和催化臭氧氧化对COD的降解过程均符合表观一级反应动力学方程.  相似文献   

10.
铁炭微电解/Fenton预处理对叔丁酚甲醛树脂合成废水   总被引:5,自引:1,他引:4  
采用铁炭微电解/Fenton试剂法联合工艺预处理对叔丁酚甲醛树脂合成废水,考察了pH、反应时间及H_2O_2投量等因素的影响.结果表明,当原水COD为12 300~17 600 mg/L时,在控制原水pH值为2.0、反应时间为120 min的条件下,铁炭微电解对COD的去除率>50%;向铁炭微电解出水中再投加2.4 mL/L的H_2O_2(30%)进行Fenton反应,在常温(20~30℃)下反应60min对COD的总去除率>83%,废水的B/C值从最初的0.034提高到0.35左右.对预处理出水(调节pH并稀释)进行后续的生化处理,出水水质能够稳定达到<污水综合排放标准>(GB 8978-1996)的二级排放标准要求.  相似文献   

11.
利用Fenton试剂深度处理两级生物接触氧化工艺出水,以解决生化处理出水水质不达标的问题.结果表明,两级生物接触氧化工艺可有效去除垃圾渗滤液中的氨氮,对氨氮的总去除率高达99.0%,对总氮的去除率也达到了41.1%,但出水COD值高达415 ms/L,且大部分为难生物降解有机物,需进行深度处理.利用Fenton试剂深度处理生化工艺出水,在H2O2和Fe2+投量均为3 mmol/L、pH值为6的最佳反应条件下,Fenton反应对COD的去除率高达53.2%,出水COD值降到195 mg/L,达到国家二级排放标准.  相似文献   

12.
以活性氧化铝球为载体,采用静置、搅拌、超声3种方法制备了Mn-Al_2O_3催化剂,通过XRD、SEM等手段比较了不同方法制备的催化剂的性能。并采用以搅拌法制备的Mn-Al_2O_3催化剂与臭氧联用来处理制药废水,分析了臭氧投加量、Mn-Al_2O_3催化剂投加量、pH值和反应时间对处理效果的影响,同时对反应过程进行了动力学分析。试验结果表明,当制药废水体积为1 L、臭氧投加量为4. 8 g/h、Mn-Al_2O_3催化剂投加量为300 g、pH值为7、反应时间为30 min时,对COD的去除率高达55. 6%,且Mn-Al_2O_3/O_3催化氧化过程符合拟一级动力学方程,对COD的降解速率常数为0. 026 41 min~(-1)。  相似文献   

13.
电解氧化处理垃圾渗滤液研究   总被引:55,自引:2,他引:55  
采用电解氧化法对垃圾渗滤液进行深度处理的研究结果表明,电解氧化过程中,NH3-N优先于COD被氧化去除;SPR三元电极的处理效果优于DSA二元电极和石墨电极;酸性条件比碱性条件更有利于电解氧化作用对COD及NH3-N的去除;Cl^-浓度高时,有利于COD及NH3-N被氧化去除。试验得到的适宜电解氧化条件是:pH值为4、Cl^-浓度为5000mg/L、电流密度为10A/dm^2、SPR三元电极为阳极、电解时间为4h。当COD及NH3-N浓度分别为693mg/L和263mg/L时,COD去除率为90.6%,NH3-N的去除率为100%。  相似文献   

14.
微波-生物接触氧化法处理制药废水的研究   总被引:1,自引:0,他引:1  
为探讨微波与生物接触氧化法用于处理制药废水的可行性,进行了相关试验研究.考察了微波处理对制药废水中COD的去除效果,结果表明:在微波辐射时间为2、8、10 min的条件下,对COD的去除率随着微波功率的增加呈相同的变化趋势;微波功率为382.5、434、459、510 W的条件下,对COD的去除率均随微波辐射时间的延长而有不同程度的提高;降低pH值有利于提高微波处理对COD的去除率.应用微波与生物接触氧化的组合工艺处理制药废水的试验结果表明:生物接触氧化的最佳处理时间为760 min;微波处理对COD的去除率为10%~15%,生物接触氧化法直接处理时,对原水COD的去除率较低,出水COD>300mg/L;经过微波处理后(459 W、8min)再进行生物接触氧化处理(760 min),则对COD的总去除率>95%,最终出水的COD<300mg/L,表明该组合工艺用于处理制药废水是可行的.  相似文献   

15.
试验采用混凝-Fenton氧化法处理印染废水,介绍了该组合工艺对印染废水的处理效果,并对影响处理效果的因素进行研究,以确定该工艺在处理印染废水时的合理参数。试验结果表明:混凝对印染废水具有较好的处理效果,当达到最佳操作条件时,其对COD的去除率达到60%,色度的去除率达到85%,SS的去除率达到95%;对混凝出水进行Fenton氧化处理,在最佳操作条件下的TOC的去除率接近90%。  相似文献   

16.
采用Fe~0/GAC-Fenton串联工艺对煤化工生化出水进行深度处理,并对处理效能进行了分析。结果表明,在进水COD为290~330 mg/L的条件下,Fe~0/GAC微电解的最佳进水p H值为3、HRT为1.5 h、m_(Fe)/m_(GAC)为2(质量比)、气水比为3,此条件下微电解对COD的平均去除率可以达到46%,出水p H值在4.85~5.20之间;微电解出水补加亚铁的Fenton反应最佳进水p H值为5、n(H_2O_2)/n(Fe~(2+))为2(物质的量之比)、H_2O_2(30%)投加量为1.0 m L/L、HRT为1.0 h,此条件下Fenton反应对COD的平均去除率可达到39%。组合工艺对COD的总去除率为66%,出水COD在106 mg/L左右,处理成本为2.95元/m~3。  相似文献   

17.
物化/水解/接触氧化工艺处理医药化工废水   总被引:1,自引:1,他引:0  
采用物化(混凝、电解氧化)/水解/接触氧化工艺处理医药化工废水,处理量为200m3/d,其中高浓度废水COD为30 000 mg/L,低浓度废水COD为3 000 mg/L.运行实践表明,电解氧化工艺与水解酸化工艺联用,可明显提高废水的可生化性;接触氧化池对COD的去除率约为70%.整个处理系统对COD的去除率达到95%,出水COD<300 mg/L,pH为7.92~8.27,达到<污水综合排放标准>(GB 8978-1996)的二级标准.  相似文献   

18.
《Planning》2019,(10)
元坝气田采出水经低温蒸馏站处理后的成品水CODcr指标超出了回用标准,对成品水中有机污染物采用荧光光谱和GC/MS两种方法进行分析表明,元坝气田采出水及低温蒸馏站成品水中有机污染物均为苯胺。为此,采用Fenton氧化法对成品水进行深度处理,现场试验结果表明:pH值、H_2O_2与CODcr质量比、H_2O_2与Fe~(2+)摩尔比是影响Fenton氧化效果的主要因素;在进水CODcr质量浓度为840 mg/L时,控制反应条件pH值在2.5~3之间;H_2O_2与CODcr质量比为7∶1,H_2O_2与Fe~(2+)摩尔比为10∶1,出水CODcr质量浓度为60 mg/L以下,达到回用标准。工程实施后,元坝气田采出水完全实现回用,Fenton氧化工艺效果稳定,每天可节约清水600 m3,节水及环保效益显著。  相似文献   

19.
针对实际制膜废液和制膜冲洗水,分别采用微电解氧化、芬顿氧化、微电解强化芬顿氧化技术处理,试验结果表明芬顿强化微电解技术处理制膜废水效果最佳,在pH值为5,炭铁比为1∶1,反应时间1 h的条件下,制膜废液的COD去除率可以达到72.22%,制膜冲洗水的COD去除率可以达到66.67%。  相似文献   

20.
针对给水厂传统工艺难以有效处理高藻、高臭味原水的问题,采用中试探究了UV/H_2O_2高级氧化法对土臭素(GSM)和二甲基异冰片(2-MIB)这两种典型臭味物质的去除效能。结果表明,当H_2O_2剂量为6 mg/L、UV功率为2.0 kW、进水流量为2.9 m~3/h时,UV/H_2O_2系统对GSM和2-MIB的去除率最高可分别达到99.52%和99.26%,相应浓度均可降至5 ng/L以下,满足《生活饮用水卫生标准》(GB 5749—2006)的要求;另外,对单位耗能参数(E_(Eo))与H_2O_2投加剂量的关系进行拟合,发现该系统在去除水中臭味物质时能耗较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号