首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
板料成形极限应力图研究   总被引:6,自引:2,他引:4  
基于塑性应力应变关系,推导出极限应力与极限应变相互转换关系,针对分散性失稳、凹槽失稳和平面应变漂移失稳等准则,进行了双线性应变路径、曲线应变路径和复合应变路径下成形极限应力图的理论计算。结果表明,成形极限应力图不受应变路径影响,对于同一失稳准则,在不同加载应变路径下几乎为同一条曲线。因此,成形极限应力图作为复杂加载路径的成形极限判据更加方便和实用。  相似文献   

2.
基于成形应力极限的管材液压成形缺陷预测   总被引:2,自引:0,他引:2  
基于塑性应力应变关系及Hill79屈服准则,推导出极限应力与极限应变间转化关系,进而建立2008T4铝合金的成形应力极限图(Forming limit stress diagram,FLSD)。采用LS-DYNA软件对三通管液压胀形过程进行模拟,应用FLSD预测胀形过程中破裂的发生及成形压力极限,并与传统成形极限图(Forming limit diagram,FLD)结果进行了对比。研究表明,FLD与FLSD预测结果中破裂缺陷位置相同,但极限内压力值存在很大差别,而FLSD预测结果与物理试验结果较吻合。考虑到FLD受应变路径影响显著的因素,将FLSD作为管材液压成形等复杂应变路径下的成形极限的判据更加方便可靠。  相似文献   

3.
通过对比铝合金平面直线翻边试验及基于集中性失稳模型得到的极限应变和开裂断口,研究了汽车用铝合金滚压包边的失效机理;基于韧性断裂、塑性增量法则和混合强化准则,理论推导得到了弯曲成形极限图,并通过试验对成形极限应力图进行了验证;最后,通过数值解析的方法,研究了韧性断裂准则在滚边成形中的适用范围。结果表明:基于韧性断裂准则的成形极限图,可以用来预测铝合金滚压包边过程中产生的开裂;包边变形过程中弯曲强化效应无法忽略,适用于拉弯成形极限预测的集中性失稳理论将无法应用于滚压包边成形。  相似文献   

4.
基于计算机视觉的应变测量系统对退火态铝合金6016进行了成形极限试验研究,并通过单向拉伸试验得到了材料的基本性能参数,利用这些参数根据Swift分散性失稳理论以及Hill集中性失稳理论预测得到了该材料的成形极限图。试验结果与预测结果对比,表明keeler公式的理论预测结果最为接近试验得到的数据。  相似文献   

5.
详细分析基于应力各向异性和变形各向异性两种求解Hill48屈服准则参数的方法。在给出两种各向异性参数求解表达式的基础上,具体分析Hill48屈服准则本身的局限性。以5754O铝合金板为研究对象,进行不同方向的单向拉伸试验。采用两种各向异性参数求解方法,基于Hill48屈服准则推导不同方向拉伸过程中的理论应力-应变曲线和拉伸过程中的变形规律。通过对比理论与试验结果具体分析参数求解方法对屈服准则精度的影响。基于两种参数求解方法,进行5754O铝合金板拉深试验的有限元模拟,讨论不同求解方法对凸耳现象的描述精度。得出结论:当对应力各向异性为主的问题进行分析时,应采用应力各向异性法求解;当对变形各向异性为主的问题进行分析时,则应采用变形各向异性法求解。研究结果对屈服准则在板料成形方面的合理应用具有重要的参考价值。  相似文献   

6.
材料弹塑性本构模型是影响有限元模拟精度的最重要因素,混合硬化本构模型能较准确表现材料塑性变形过程真实硬化特征,而本构模型中材料特性相关参数是否准确直接影响到有限元模拟的精度。基于Hill48各向异性屈服准则,结合Voce各向同性硬化模型和Armstrong-Frederic非线性随动硬化模型,建立一个考虑材料各向异性和Bauschinger效应的混合硬化弹塑性本构模型。通过循环拉伸-压缩试验,获得DC54D+ZF镀锌板的循环变形应力-应变曲线,并利用通用全局优化算法,根据单向应力状态混合硬化本构方程,准确地确定了混合硬化模型中的材料特性参数。最后,使用ABAQUS有限元软件对板材循环拉伸-压缩问题和板材过拉深筋问题进行该本构模型的适用性分析,验证了所建立的各向异性混合硬化材料本构模型的可靠性和精确性。循环拉伸-压缩试验是直接准确地获得本构模型材料参数的有效方法。  相似文献   

7.
为解决AA6061挤压管材成形性能极差的问题,建立了“固溶水淬+颗粒介质胀形+人工时效”的铝合金管件成形工艺流程。研究了固溶水淬和人工时效工艺参数对材料性能影响规律,并建立了考虑厚向应力的三维成形极限应力图;建立了管件颗粒介质胀形有限元仿真模型,分析管件变形特征质点的运动轨迹和应力应变状态,并应用理论成形极限图对管件破裂失稳点和胀形极限进行分析和预判。四方截面管件胀形工艺试验结果表明,颗粒介质胀形工艺与合适的热处理工艺相结合能够有效地解决AA6061挤压管材的成形问题;考虑厚向应力的三维成形极限应力图可作为铝合金管件胀形工艺方案制定的破裂失稳判据。  相似文献   

8.
基于Hill集中失稳理论推导出了冲压成形过程中涂层与基体的应力-应变方程,通过求解非线性方程计算出各主应变。依据实验数据采用多项式拟合法拟合了材料的应力-应变曲线,对电沉积镍涂层的冲压成形极限的左边进行了计算,并和应变硬化曲线求得的成形极限进行了比较。计算结果表明,用多项式拟合法求得的电沉积镍涂层的成形极限安全区域比用应变硬化曲线求得的安全区域要高,基体厚向异性、涂层厚度和基体厚度对板料成形极限左边影响不大。  相似文献   

9.
直缝焊管液压成形极限理论预测模型   总被引:2,自引:1,他引:1  
直缝焊管广泛应用于汽车车身管状零件液压成形中,焊接区影响着焊管塑性变形规律,准确评价焊管缩颈或破裂现象是工程上倍受关注的问题。基于金相分析法和显微硬度测量法分析高频感应焊管的结构特征,并根据液压成形条件下高频感应焊管的变形特点,提出一种用于计算直缝焊管液压成形极限的理论方法。基于该方法,选用Swift硬化方程和Hill屈服准则推导出直缝焊管液压成形极限理论预测模型,在已知焊管(包含焊接区和基体区)材料性能参数条件下可获得直缝焊管液压成形极限图。运用此理论预测模型,计算出QSTE340高频感应焊管的液压成形极限图。成形极限的计算结果与试验对比表明,二者吻合较好,这证明所建立的直缝焊管液压成形极限的理论预测模型是正确的。  相似文献   

10.
马向东  官英平 《中国机械工程》2015,26(22):3057-3063
建立了从细观损伤角度预测拼焊板成形极限的Gurson-Tvergaard-Needleman(GTN)损伤模型,用有限元逆向法确定了损伤模型中的各损伤参数。采用有限元软件ABAQUS耦合基于Mises屈服准则的弹塑性GTN损伤模型,对拼焊板半球凸模胀形过程进行了数值模拟。设计了拼焊板半球凸模胀形物理试验,试验过程中通过改变试件的宽度得到了不同应变状态下完整的拼焊板成形极限图,并与GTN细观损伤模型预测到的拼焊板成形极限图进行对比分析,验证了GTN细观损伤模型预测拼焊板成形极限图的准确性。  相似文献   

11.
To predict limit strains in biaxial stretching of sheet metals, a criterion for ductile fracture is combined with the finite element simulation. The limit strains are determined by substituting the values of stress and strain obtained from the finite element simulation into the ductile fracture criterion. Material constants in the criterion are obtained from the fracture strains measured in the biaxial stretching tests. Calculations are carried out for various strain paths from balanced biaxial stretching to uniaxial tension of aluminium alloy sheets, and compared with the experimental results. The predicted limit strains are in good agreement with the measured ones not only just at the fracture site but also at outside of the fracture site. It is demonstrated that the forming limit diagrams are successfully predicted by the present approach.  相似文献   

12.
Based on the analysis proposed by Jones and Gillis (JG), forming limit diagrams (FLDs) are calculated from idealization of sheet deformation into three stages: (I) homogeneous deformation up to maximum load, (II) deformation localization under constant load, and (III) local necking with precipitous drop in load. In the calculation, Hill's 1993 yield criterion is used. Using this yield criterion and the JG model, effects of materials parameters such as ratio of uniaxial to equi-biaxial yield stress, strain hardening, strain rate sensitivity and plastic anisotropy on the shape and level of forming limit curves are studied. In addition, the capability of the JG model to predict limit strains is demonstrated through comparison of calculated results with experimental data for the interstitial free (IF) steel and aluminum alloys 3003-O and 8014-O. It is concluded that although the model predicts the effect of material parameters reasonably well, the calculated limit strains are higher than the experimental FLDs. The observed discrepancy may be attributed to the assumption of planar isotropy, cavitation and the nature of texture present in the sheets. Due to the overestimation of the predictions, care must be taken when using this approach for industrial purposes.  相似文献   

13.
The forming limit curve (FLC), a plot of the limiting principal surface strains that can be sustained by sheet metals prior to the onset of localized necking, is useful for characterizing the formability of sheet metal and assessing the forming severity of a drawing or stamping process. Both experimental and theoretical work reported in the literature has shown that the FLC is significantly strain-path dependent. In this paper, a modified Marciniak and Kuczynski (MK) approach was used to compute the FLC in conjunction with two different work-hardening models: an isotropic hardening model and a mixed isotropic-nonlinear kinematic hardening model, which is capable of describing the Bauschinger effect. Predictions of the FLC using the MK analysis have been shown to be dependent on the shape of the initial yield locus and on its evolution during work hardening; therefore the hardening model has an influence on the predicted FLC. In this investigation, published experimental FLCs of AISI-1012 low carbon steel and 2008-T4 aluminum alloy sheets that were subjected to various nonlinear loading paths were compared to predictions using both hardening models. The predicted FLCs were found to correlate quite well with experimental data and the effects of strain path changes and of the hardening model on predicted FLCs are discussed.  相似文献   

14.
A new method of predicting neck formation in sheets under non-proportional loading is proposed, based on the concept of “cumulative forming severity”. This concept is borrowed from a macroscopic model of ductile fracture where the crack initiation is governed by the accumulated equivalent plastic strain modified by the stress triaxiality and the Lode angle parameter. Such an approach necessitates a representation of the forming limit diagram (FLD) in the space of the equivalent strain to neck and the Lode angle parameter.Another new factor is the assumption of the non-linear accumulation of forming severity for non-proportional and complex loading histories. A class of non-linear weighting function is proposed with only one free parameter. A starting point in the derivation is the known FLD corresponding to proportional loading. This can be determined from Hill's and Stören and Rice analytical solutions, from numerical simulation, or else taken directly from experiments. In the case of proportional loading, necking depends on the final state of stress or strain, so it does not matter if necking severity index is accumulated in a linear or non-linear way. For non-proportional loading, the unknown free parameter of the non-linear accumulation rule must be determined from a test.Experimental data on FLDs under complex strain paths for two types of material, aluminum alloy 6111-T4 [Graf A, Hosford W. The influence of strain-path changes on forming limit diagrams of A1 6111 T4. International Journal of Mechanical Sciences 1994;36(10):897–910.] and aluminum-killed sheet steel [Muschenborn W, Sonne HM. Influence of the strain path on the forming limits of sheet metal. Archiv fur das Eisenhuttenwesen 1975;46:597–602], found in the literature are revisited by the proposed model. Calibrated from only one test with non-proportional loading condition, the model is able to predict the remaining tests of complex loading paths with good accuracy.  相似文献   

15.
In this study, a two surface plasticity model was developed and used to simulate the uniaxial ratchetting response of CS 1026 steel. Most cyclic plasticity models used in ratchetting simulations are Chaboche-type nonlinear kinematic hardening models, which deal with dynamic recovery terms considering the back stress tensor. This paper describes the ratchetting simulation of steel by the two surface model based on yield theory following both isotropic and kinematic hardening rules in order to obtain enhanced ratchetting response. The parameters used in the simulation were obtained from a parametric study and were determined from the initial range and stabilized range of CS 1026 steel. In addition, the two surface model was validated by comparing the results of a ratchetting simulation with experimentally determined maximum axial strain per cycle. The ratchetting responses obtained from the two surface model are an improved simulation results compared with results from bilinear and kinematic hardening models.  相似文献   

16.
The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.  相似文献   

17.
The effects of yield criteria on predictions of the right-hand side of forming limit diagrams (FLDs) are investigated. Predictions of limit strains are determined from an initial imperfection model based on the early work of Marciniak and Kuczynski (1967). Particular attention is placed on the effect of normal plastic anisotropy on limit strains during biaxial sheet stretching. The anisotropic yield criteria investigated in this paper include Hill’s (1948) quadratic criterion, Hosford’s (1979) higher-order criterion, and case 4 of Hill’s (1979) non-quadratic criterion. Several important characteristics of the yield surface shape are discussed and a new parameter that quantifies some of these aspects is introduced. Similar to the work of Barlat (1987), this parameter is based on the relative position of plane strain on the yield surface and can be used to predict the various effects of yield criteria on limit strains. Results indicate that predictions of FLD are very sensitive to selection of yield criteria.  相似文献   

18.
For elastic-plastic sheets under biaxial stretching localized necking is investigated assuming that the material follows a kinematic hardening rule. The investigation is mainly based on the plane stress approximation, but includes a few results obtained in the context of the three-dimensional theory. It is found that the forming limit curves predicted by kinematic hardening are in far better agreement with experimental results than the similar curves predicted by standard flow theory with isotropic hardening. For a high hardening material quite good agreement is obtained with predictions of deformation theory of plasticity, which may be considered as a simple model of a solid that develops a vertex on the yield surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号