首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
The solution to a two-dimensional problem using the boundary element method requires the evaluation of a line integral over the boundary. The integrand ot this line integral is a product of a known Green's function and an unknown function. A large number of Green's functions for two-dimensional problems can be represented by a linear combination of four singular functions. By approximating the unknown function by a linear combination of known polynomials, integrals are generated whose integrand is a product of the polynomiais and one of the four singular functions. To evaluate these integrals analytically, the boundary is approximated by a sum of straight-line segments. Recursive formulae are established which reduce the generality and the complexity of the integrands to simple expressions. Analytical forms for these simple expressions are found and are used for initiating the algorithm.  相似文献   

3.
The three-dimensional Green's functions in anisotropic elastostatic multilayered composites (MLCs) obtained within the framework of generalized Stroh formalism are expressed as two-dimensional integrals of Fourier inverse transform over an infinite plane. Their numerical evaluations involve tremendous computational efforts in particular in the presence of various singularities and near-singularities due to the presence of material mismatches across interfaces. The present paper derives the complete set of the Green's functions including displacement, stress and their derivatives with respect to source coordinates using a novel and computationally efficient approach. It is proposed for the first time that the Green's functions in the MLCs are expressed as a sum of a special solution and a general-part solution, with the former consisting of the first few terms of the trimaterial expansion solution around a source load. Since the zero-order term contains the singularity corresponding to the homogeneous full-space solution and can be evaluated analytically, and the other higher-order terms contain most of the near-singular behaviors and can be reduced to a line integral over a finite interval, the general-part solution becomes regular and the Green's functions overall can be evaluated efficiently. As an example, the Green's functions in a five-layered orthortropic plate are evaluated to demonstrate the efficiency of the proposed approach. Also, the detailed characteristics of these Green's functions are examined in both the transform- and physical-domains. These Green's functions are essential in developing the boundary-integral-equation formulation and numerical boundary element method for composite laminate problems involving regular and cracked geometries.  相似文献   

4.
A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.  相似文献   

5.
The symmetric Galerkin boundary element method is used to solve boundary value problems by keeping the symmetric nature of the matrix obtained after discretization. The matrix elements are obtained from a double integral involving the double derivative of Green's operator, which is highly singular. The paper presents a regularization of the hypersingular integrals which depend only on the properties of Green's tensor. The method is presented in the case of Laplace's operator, with an example of application. The case of elasticity is finally addressed theoretically, showing an easy extension to any case of anisotropy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Green's functions are important mathematical tools in mechanics and in other parts of physics. For instance, the boundary element method needs to know the Green's function of the problem to compute its numerical solution. However, Green's functions are only known in a limited number of cases, often under the form of complex analytical expressions. In this article, a new method is proposed to calculate Green's functions for any linear homogeneous medium from a simple finite element model. The method relies on the theory of wave propagation in periodic media and requires the knowledge of the finite element dynamic stiffness matrix of only one period. Several examples are given to check the accuracy and the efficiency of the proposed numerical Green's function.  相似文献   

7.
This study focuses on the application of boundary element methods for linear fracture mechanics of two-dimensional piezoelectric solids. A complete set of piezoelectric Green's functions, based on the extended Lekhnitskii's formalism and distributed dislocation modeling, are presented. Special Green's functions are obtained for an infinite medium containing a conducting crack or an impermeable crack. The numerical solution of the boundary integral equation and the computation of fracture parameters are discussed. The concept of crack closure integral is utilized to calculate energy release rates. Accuracy of the boundary element solutions is confirmed by comparing with analytical solutions reported in the literature. The present scheme can be applied to study complex cracks such as branched cracks, forked cracks and microcrack clusters.  相似文献   

8.
This paper presents analytical Green's functions for the transient heat transfer phenomena by conduction, for an unbounded medium, half-space, slab and layered formation when subjected to a point heat source. The transient heat responses generated by a spherical heat source are computed as Bessel integrals, following the transformations proposed by Sommerfeld [Sommerfeld A. Mechanics of deformable bodies. New York: Academic Press; 1950; Ewing WM, Jardetzky WS, Press F. Elastic waves in layered media. New York: McGraw-Hill; 1957]. The integrals can be modelled as discrete summations, assuming a set of sources equally spaced along the vertical direction. The expressions presented here allow the heat field inside a layered formation to be computed without fully discretizing the interior domain or boundary interfaces.The final Green's functions describe the conduction phenomenon throughout the domain, for a half-space and a slab. They can be expressed as the sum of the heat source and the surface terms. The surface terms need to satisfy the boundary conditions at the surfaces, which can be of two types: null normal fluxes or null temperatures. The Green's functions for a layered formation are obtained by adding the heat source terms and a set of surface terms, generated within each solid layer and at each interface. These surface terms are defined so as to guarantee the required boundary conditions, which are: continuity of temperatures and normal heat fluxes between layers.This formulation is verified by comparing the frequency responses obtained from the proposed approach with those where a double-space Fourier transformation along the horizontal directions [Tadeu A, António J, Simões N. 2.5D Green's functions in the frequency domain for heat conduction problems in unbounded, half-space, slab and layered media. CMES: Computer Model Eng Sci 2004;6(1):43–58] is used. In addition, time domain solutions were compared with the analytical solutions that are known for the case of an unbounded medium, a half-space and a slab.  相似文献   

9.
A stochastic boundary element method (SBEM) is developed in this work for evaluating the dynamic response of underground openings excited by seismically induced, horizontally polarized shear waves under steady-state conditions. The surrounding geological medium is viewed as an elastic continuum exhibiting large randomness in its mechanical properties, which implies that the wave number of the propagating signal is a function of a random variable. Suitable Green's functions are proposed and used within the context of the SBEM formulation. More specifically, a series expansion for the Green's functions is employed, where the basis functions are orthogonal polynomials of a random argument (polynomial chaos). These are subsequently incorporated in the SBEM formulation, which employs the usual quadratic, isoparametric line elements for modeling the surfaces of the problem in question. Finally, this formulation is used for the solution of a few problems of engineering interest involving buried cavities (tunnels). We note that the present approach departs from earlier boundary element derivations based on perturbations, which are valid for ‘small’ amounts of randomness in the elastic continuum.  相似文献   

10.
A simple idea is proposed to solve boundary value problems for elastoplastic solids via boundary elements, namely, to use the Green's functions corresponding to both the loading and unloading branches of the tangent constitutive operator to solve for plastic and elastic regions, respectively. In this way, domain integrals are completely avoided in the boundary integral equations. Though a discretization of the region where plastic flow occurs still remains necessary to account for the inhomogeneity of plastic deformation, the elastoplastic analysis reduces, in essence, to a straightforward adaptation of techniques valid for anisotropic linear elastic constitutive equations (the loading branch of the elastoplastic constitutive operator may be viewed formally as a type of anisotropic elastic law). Numerical examples, using J2‐flow theory with linear hardening, demonstrate that the proposed method retains all the advantages related to boundary element formulations, is stable and performs well. The method presented is for simplicity developed for the associative flow rule; however, a full derivation of Green's function and boundary integral equations is also given for the general case of non‐associative flow rule. It is shown that in the non‐associative case, a domain integral unavoidably arises in the formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Thermomagnetoelectroelastic problems for various defects embedded in an infinite matrix are considered in this paper. Using Stroh's formalism, conformal mapping, and perturbation technique, Green's functions are obtained in closed form for a defect in an infinite magnetoelectroelastic solid induced by the thermal analog of a line temperature discontinuity and a line heat source. The defect may be of an elliptic hole or a Griffith crack, a half-plane boundary, a bimaterial interface, or a rigid inclusion. These Green's functions satisfy the relevant boundary or interface conditions. The proposed Green's functions can be used to establish boundary element formulation and to analyzing fracture behaviour due to the defects mentioned above.  相似文献   

12.
A new technique is developed to evaluate the Cauchy principal value integrals and weakly singular integrals involved in the boundary integral equations. The boundary element method is then applied to analyse scattering of waves by cracks in a laminated composite plate. The Green's functions are obtained in discrete form through the thickness of the plate using a stiffness method. To circumvent the difficulties associated with the evaluation of hypersingular integrals due to the presence of cracks, the multidomain technique is applied. Numerical computations have shown the accuracy and reliability of the proposed technique. Scattered wave fields for a composite plate with a horizontal crack are computed. The numerical results show that the applications of the technique in non-destructive evaluation of defects is very promising.  相似文献   

13.
In this paper the diffusion equation is solved in two-dimensional geometry by the dual reciprocity boundary element method (DRBEM). It is structured by fully implicit discretization over time and by weighting with the fundamental solution of the Laplace equation. The resulting domain integral of the diffusive term is transformed into two boundary integrals by using Green's second identity, and the domain integral of the transience term is converted into a finite series of boundary integrals by using dual reciprocity interpolation based on scaled augmented thin plate spline global approximation functions. Straight line geometry and constant field shape functions for boundary discretization are employed. The described procedure results in systems of equations with fully populated unsymmetric matrices. In the case of solving large problems, the solution of these systems by direct methods may be very time consuming. The present study investigates the possibility of using iterative methods for solving these systems of equations. It was demonstrated that Krylov-type methods like CGS and GMRES with simple Jacobi preconditioning appeared to be efficient and robust with respect to the problem size and time step magnitude. This paper can be considered as a logical starting point for research of iterative solutions to DRBEM systems of equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The problem of computing singular and hypersingular integrals involved in a large class of boundary value problems is considered. The method is based on Green's theorem for calculating the diagonal elements of the resulting discretized matrix using the Nyström discretization method. The method is successfully applied to classical boundary value problems. Convergence of the method is also discussed.  相似文献   

15.
With the aid of the elastic–viscoelastic correspondence principle, the boundary element developed for the linear anisotropic elastic solids can be applied directly to the linear anisotropic viscoelastic solids in the Laplace domain. Green's functions for the problems of two-dimensional linear anisotropic elastic solids containing holes, cracks, inclusions, or interfaces have been obtained analytically using Stroh's complex variable formalism. Through the use of these Green's functions and the correspondence principle, special boundary elements in the Laplace domain for viscoelastic solids containing holes, cracks, inclusions, or interfaces are developed in this paper. Subregion technique is employed when multiple holes, cracks, inclusions, and interfaces exist simultaneously. After obtaining the physical responses in Laplace domain, their associated values in time domain are calculated by the numerical inversion of Laplace transform. The main feature of this proposed boundary element is that no meshes are needed along the boundary of holes, cracks, inclusions and interfaces whose boundary conditions are satisfied exactly. To show this special feature by comparison with the other numerical methods, several examples are solved for the linear isotropic viscoelastic materials under plane strain condition. The results show that the present BEM is really more efficient and accurate for the problems of viscoelastic solids containing interfaces, holes, cracks, and/or inclusions.  相似文献   

16.
The most accurate boundary element formulation to deal with fracture mechanics problems is obtained with the implementation of the associated Green's function acting as the fundamental solution. Consequently, the range of applications of this formulation is dependent on the availability of the appropriate Green's function for actual crack geometry. Analytical Green's functions have been presented for a few single crack configurations in 2-D applications and require complex variable theory. This work extends the applicability of the formulation through the introduction of efficient numerical means of computing the Green's function components for single or multiple crack problems, of general geometry, including the implementation to 3-D problems as a future development. Also, the approach uses real variables only and well-established boundary integral equations.  相似文献   

17.
In this article the hypersingular integrals that arise when boundary integral equation (BIE) methods are used to solve fracture mechanics problems are considered. An approach for hypersingular integral regularization is based on the theory of distribution and Green's theorems. This approach is applied for regularization of the hypersingular integrals over triangular boundary elements (BEs) for the case of piecewise-constant and piecewise-linear approximations. The hypersingular integrals are transformed into regular contour integrals that can be easily calculated analytically.  相似文献   

18.
In this paper, the resonance and radiation characteristics of multilayered cylindrical–rectangular microstrip antennas are analysed. The problem is formulated, in the spectral-domain, using an electric field integral equation and the spectral-domain Green's function. An efficient compact method is developed to obtain the Green's function of the electric field due to the current distribution of a patch located in an arbitrary layer of a cylindrical stratified medium. To accomplish this, efficient matrix representations are used to describe the electric and magnetic fields in each layer of the geometry in terms of ABCD matrices characteristic of its material properties. The boundary integral equation for the unknown patch current is solved numerically by applying the boundary element method using three kinds of basis functions. Taking into account the symmetry properties of the elements of the moment method matrix, the CPU time is reduced significantly. The convergence of the method is proven by performing the resonant frequencies for a single layer cylindrical–rectangular microstrip patch vs. the substrate thickness. The computed data are found to be in very good agreement with those found in the literature, using only two basis functions. Once the validity of the method is checked, further results for various antennas structures are presented proving the generality of the method. Finally, the effect of an air gap between the substrate layer and the ground conducting cylinder on far zone radiation field is investigated using the steepest-descent method.  相似文献   

19.
The displacement and stress Green's functions for a 3D triclinic half‐space with embedded harmonic point load is considered. The resulting displacement and stress fields are expressed in terms of triple Fourier integrals. The first integral was evaluated using contour integration and the 3D Green's functions were obtained as a superposition of 2D results over the azimuthal angle. The resulting algorithm developed for evaluation of the Green's functions avoids repeated calculations of the same quantities and it utilizes the vectorized manipulation within MATLAB environment. The algorithm places no restriction on material properties, frequency and location of source and observation points. Extensive testing of the numerical results was performed for both displacement and stress. The tests confirm the accuracy of the numerical results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The transient Green's function of the 2‐D Lamb's problem for the general case where point source and receiver are situated beneath the traction‐free surface is derived. The derivations are based on Laplace‐transform methods, utilizing the Cagniard–de Hoop inversion. The Green's function is purely algebraic without any integrals and is presented in a numerically applicable form for the first time. It is used to develop a Green's function BEM in which surface discretizations on the traction‐free boundary can be saved. The time convolution is performed numerically in an abstract complex plane. Hence, the respective integrals are regularized and only a few evaluations of the Green's function are required. This fast procedure has been applied for the first time. The Green's function BEM developed proved to be very accurate and efficient in comparison with analogue BEMs that employ the fundamental solution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号