首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced Sensitivity RDX (RS‐RDX) has received a lot of attention and interest from the explosive community in the recent years. There are several producers of RS‐RDX, most of them using a direct nitration (Woolwich process) for the RDX synthesis, while Chemring Nobel uses the Bachmann process. The processes for obtaining the RS properties probably differ between the various producers. Chemring Nobel has also developed an HMX quality that shows Reduced Sensitivity (RS‐HMX) of different particle size distributions. The shock sensitivity is at the same level as for RS‐RDX in comparable compositions. Reduced shock sensitivity has been obtained for RS‐RDX and Reduced Sensitivity (RS‐HMX) in both pressable and cast‐cured compositions. By using a pressable composition, it is possible to get the results from a BICT gap test faster than from a cast‐cured composition that has to go through a curing process. Chemring Nobel in cooperation with FFI have performed an extensive accelerated ageing testing of RS‐RDX produced by the Bachmann process. The samples have been aged at 60 and 70 °C and the shock sensitivity tested by two different gap tests. The results demonstrate that the Chemring Nobel RS‐RDX retain the insensitivity towards shock during ageing and show no degradation at all. Accelerated ageing testing of RS‐HMX has also been performed and shows no degradation in the shock sensitivity.  相似文献   

2.
Intragranular defects inside RDX/HMX were studied by optical microscopy with matching refractive (OMS), sink‐float method (SFM), and micro‐focus CT (μCT) techniques. OMS results revealed the phenomenon that RDX/HMX had more defects and cracks than RS‐RDX/RS‐HMX. μCT results indicated that RDX/HMX had more defects with larger volume than RS‐RDX/RS‐HMX. The gap test showed that critical shock pressure/gap thickness was 6.4 GPa/19.4 mm for PBX based on RDX, while they were 7.5 GPa/17.5 mm and 8.6 GPa/16.2 mm for PBX based on M‐RDX and RS‐RDX, respectively. Meanwhile, an analysis of the relationship between defects inside RDX/HMX crystal and shock sensitivity was made. Finally, the shock pressure response under impact loading was investigated by discrete element method.  相似文献   

3.
An interlaboratory comparison of seven lots of commercially available RDX was conducted to determine what properties of the nitramine particles can be used to assess whether the RDX has relatively high or relatively low sensitivity. The materials chosen for the study were selected to give a range of HMX content, manufacturing process and reported shock sensitivity. The results of two different shock sensitivity tests conducted on a PBX made with the RDX lots in the study showed that there are measurable differences in the shock sensitivity of the PBXs, but the impact sensitivity for all of the lots is essentially the same. Impact sensitivity is not a good predictor of shock sensitivity for these types of RDX. Although most RDX that exhibits RS has low HMX content, that characteristic alone is not sufficient to guarantee low sensitivity. A range of additional analytical chemistry tests were conducted on the material; two of these (HPLC and DSC) are discussed within.  相似文献   

4.
Reduced sensitivity RDX (RS‐RDX) particles are now available from several manufacturers. But a clear understanding of this reduced sensitivity behavior is not yet available. RS‐RDX particles are usually employed in cast formulations to reduce their shock sensitivity. The use of RS‐RDX in pressed formulations is more recent and does not always give reduced sensitivity formulations.  相似文献   

5.
In an attempt to further contribute to the characterization of explosive compositions, small scale Floret tests were performed using four RDX grades, differing in product quality. A Floret test provides a measure – by indentation of a copper block – of detonation spreading or the initiability and shock wave divergence and is applied in particular to explosives used in initiation trains. Both as‐received RDX and PBXs (based on the AFX‐757 composition, a hard target penetrator explosive) containing these RDX grades were tested in the Floret test set‐up. It was found that the Floret test method, when applied to granular, as‐received RDX, was not able to discriminate between the overall RDX product qualities on the basis of the resulting volume of the indentation in the copper block. For the Floret test data of the PBX samples, a division into two parts, where one of the RDX lots shows a lower dent volume compared to the other RDX lots tested. Based on the results presented in this paper with granular RDX and a PBX composition and earlier results with a different type of PBX (based on PBXN‐109, an insensitive high explosive used in a wide range of munitions), the Floret test could be developed into a screening test for shock sensitivity and product quality, without the need for complex and large volume casting of specific PBX compositions.  相似文献   

6.
A One‐Dimensional Time to Explosion (ODTX) apparatus has been used to study the times to explosion of a number of compositions based on RDX and HMX over a range of contact temperatures. The times to explosion at any given temperature tend to increase from RDX to HMX and with the proportion of HMX in the composition. Thermal ignition theory has been applied to time to explosion data to calculate kinetic parameters. The apparent activation energy for all of the compositions lay between 127 kJ mol−1 and 146 kJ mol−1. There were big differences in the pre‐exponential factor and this controlled the time to explosion rather than the activation energy for the process.  相似文献   

7.
Fourier transform‐infrared spectroscopy (FT‐IR) in transmission and photoacoustic detection (PAS) techniques have been used for the characterization of polymeric coating of cyclotrimethylenetrinitramine (RDX) using a fluoroelastomer (Viton®). Although the bands of the polymer were indicated by two different techniques, the transmission (casting film) showed better evidence of absorption of fluoroelastomer for the polymer coating of the energetic material. Also attenuated total reflectance (ATR), another FT‐IR technique, has been used to analyze a cyclotetramethylenetetramine (HMX)/Viton system for the characterization of Viton bands and it showed excellent results without sample preparation.  相似文献   

8.
Thermal behaviour of HMS/RDX mixtures is studied by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). It has been found that the temperature of polymorphic transformation of HMX shows an increase due to the presence of RDX. The enthalpies of the enothermic transformations depend on the composition of the mixture, and up to 30% RDX there is a linear relationship. The formation of an eutectic with a composition of 30/70 (HMX/RDX) is postulated to explain the melting processes.  相似文献   

9.
In order to characterize the initial phase of the divergent detonation wave in PBX, a hemispheric explosive sample was initiated by a long cylindrical charge of the same explosive. The tested PBX is composed of 85 wt% of RDX and 15 wt% of binder based on HTPB. This PBX‐RDX presents an effective density of 1.57 g/cm3, and a detonation velocity of 7.90 mm/μs.  相似文献   

10.
Accelerated ageing at 100 °C of mixtures of RHA (RDX + 6% HMX) and lead has demonstrated that these components are incompatible. The rate of reaction to give N2O, hexamine and triazine was shown to be dependent upon the particle size of the lead, and pressing pressure for discs of these mixtures. In some cases there was more hexamine than RDX after 320 h at 100 °C. It is suggested that the preparation of the sample for the standard vacuum stability test (compatibility test) should be modified, using particles of explosive and nonexplosive of comparable size, and possibly even pressing, in order to simulate the conditions present in operating systems.  相似文献   

11.
Submicrometer‐sized RDX and HMX crystals were produced by electrospray crystallization and submicrometer‐sized RDX crystals were produced by plasma‐assisted crystallization. Impact and friction sensitivity tests and ballistic impact chamber tests were performed to determine the product sensitivity. Rather than reflecting the quality of the particles, we found the sensitivity tests to be unreliable for submicrometer particles. The used impact test was not accurate enough, while in the friction and ballistic impact chamber tests the submicrometer‐sized crystals were distributed among the grooves of the porcelain plate or among the grains of the sandpaper used in these tests. These observations stress the need for revisiting the current standards used for determining the hazardous properties like friction and impact sensitivity of energetic materials in the case, where the sample consists of submicrometer‐sized crystals. Recommendations were suggested to develop new test methods that only use the interactions between the particles and therefore allow the application of sensitivity tests for submicrometer/nano‐sized energetic materials.  相似文献   

12.
Coarse particles of the high explosive RDX in different qualities (S‐RDX, I‐RDX, VI‐RDX) were aged artificially in air and argon, equivalent up to 25 years at 25 °C. The samples were investigated by means of X‐ray diffraction and rocking curves, revealing the behavior of microstrain during the artificial aging. The investigations revealed that the improved crystal quality of RDX survives artificial aging in contrast to a standard quality, where aging increases microstrain significantly. Besides aging details and mechanisms on a crystal level are described and discussed, such as eutectic mixtures with HMX impurities, crystal growth, defect healing, surface diffusion and smoothing, and reconstruction of crystal faces, edges and corners in rounded particles.  相似文献   

13.
The high‐energy explosives 2,4,6‐trinitrotoluene (TNT), hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX), and the high melting explosive octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) are common groundwater contaminants at active and abandoned munitions production facilities causing serious environmental problems. A highly efficient and environmentally friendly method was developed for the treatment of the explosives‐contaminated wastewaters using zero‐valent iron nanoparticles (ZVINs). ZVINs with diameters of 20–50 nm and specific surface areas of 42.56 m2 g−1 were synthesized by the co‐precipitation method. The explosives degradation reaction is expressed to be of pseudo first‐order and the kinetic reaction parameters are calculated based on different initial concentrations of TNT, RDX, and HMX. In addition, by comparison of the field emission scanning electron microscopy (FE‐SEM) images for the fresh and reacted ZVINs, it was apparent that the ZVINs were oxidized and aggregated to form Fe3O4 nanoparticles as a result of the chemical reaction. The X‐ray diffraction (XRD) and X‐ray absorption near edge structure (XANES) measurements confirmed that the ZVINs corrosion primarily occurred due to the formation of Fe3O4. Furthermore, the postulated reaction kinetics in different concentrations of TNT, RDX, and HMX, showed that the rate of TNT removal was higher than RDX and HMX. Furthermore, by‐products obtained after degradation of TNT (long‐chain alkanes/methylamine) and RDX/HMX (formaldehyde/methanol/hydrazine/dimethyl hydrazine) were determined by LC/MS/MS, respectively. The high reaction rate and significant removal efficiencies suggest that ZVINs might be suitable and powerful materials for an in‐situ degradation of explosive polluted wastewaters.  相似文献   

14.
Plastic explosives based on different cyclic nitramines with different polymeric matrices were prepared and studied. The used polymeric matrices were fabricated on the basis of polyisobutylene (PIB), acrylonitrile‐butadiene rubber (ABR), Viton A, and polydimethyl‐siloxane as binders, whereas the nitramines named RDX (1,3,5‐trinitroperhydro‐1,3,5‐triazine), β‐HMX (β‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine), BCHMX (cis‐1,3,4,6‐tetranitrooctahydroimidazo‐[4,5‐d]imidazole) and ε‐HNIW (ε‐2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane) were used as explosive fillers. Commercial Semtex 10, based on pentaerythritol tetranitrate (PETN), was used for comparison. Impact sensitivity, loading density, ρ, detonation velocity, D, and relative explosive strength (RS) measured by ballistic mortar were determined. It was concluded that plastic BCHMX based on Viton A or PIB‐matrix exhibits higher RS compared with PBXs based on RDX and HMX. Correlations between RS and the impact sensitivity, the ρD2 term and the square of the detonation velocity were studied and discussed. The results confirm the well‐known fact that increasing the performance is usually accompanied by an increase in the sensitivity of the explosives. In this connection, Viton A enables achieving a high RS, but with a relatively high sensitivity of the PBXs, whereas the polydimethyl‐siloxane matrix should perhaps give PBXs with optimum explosive strength and sensitivity parameters.  相似文献   

15.
Looking for explosives for Low Vulnerability Ammunitions leads to an interest in explosive molecules less sensitive than the usual nitramines (RDX, HMX). If TATB is quite convenient in terms of sensitivity, its performance is too low. The researches described here are related to synthesis and use of NTO (nitrotriazolone), another insensitive molecule. The synthesis by nitration of TO (triazolone) is easy and the two steps from available starting materials have been optimized. A comparison of desensitivation of PBX either by TATB or by NTO have been made. The sensitivity levels were found equivalent while the detonation velocity of the NTO based PBX was slightly higher. Unfortunately in this case, the failure diameter would be larger. The last part relates to an extensive characterization in terms of performance and vulnerability to fast cook off, slow cook off, bullet impact, shock sensitivity and sympathetic detonation of a NTO and HMX based PBX. This PBX, B 2214, was one of the first examples of explosive composition showing no sympathetic detonation, even in 248 mm large diameter.  相似文献   

16.
At present, cis‐1,3,4,6‐tetranitro‐octahydroimidazo‐[4,5‐d]imidazole (bicyclo‐HMX, BCHMX) and ε‐2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (ε‐HNIW, CL‐20) are a topic of interest from the attractive and the potentially attainable nitramines. They were chosen to be studied in comparison with 1,3,5‐trinitro‐1,3,5‐triazinane (RDX) and β‐1,3,5,7‐tetranitro‐1,3,5‐tetrazocane (β‐HMX). Marginal attention is devoted also to 4,8,10,12‐tetranitro‐2,6‐dioxa‐tetraazawurtzitane (Aurora 5). BCHMX, ε‐HNIW, RDX, and HMX were studied as plastic bonded explosives (PBXs) with elastic properties based on Composition C4 and Semtex 10 matrices. Also they were studied as a highly pressed PBXs based on the Viton A binder. The detonation parameters and sensitivity aspects of these nitramines and their corresponding PBXs were determined. Relative explosive strengths (RS) of these compositions are mentioned with mutual relationships between the measured RS values and some detonation parameters. These relationships indicate a possibility of changes in detonation chemistry of these mixtures filled mainly by HNIW. A sensitivity of RS‐CL20 (HNIW with reduced sensitivity) is reported and the new findings in the friction sensitivity are discussed.  相似文献   

17.
Hydroxyl‐terminated polybutadiene (HTPB) based sheet explosives incorporating insensitive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) as a part replacement of cyclotrimethylene trinitramine (RDX) have been prepared during this work. The effect of incorporation of TATB on physical, thermal, and sensitivity behavior as well as initiation by small and high caliber shaped charges has been determined. Composition containing 85% dioctyl phthalate (DOP) coated RDX and 15% HTPB binder was taken as control. The incorporation of 10–20% TATB at the cost of RDX led to a remarkable increase in density (1.43→1.49 g cm−3) and tensile strength (10→15 kg cm−2) compared to the control composition RDX/HTPB(85/15). RDX/TATB/HTPB based compositions were found less vulnerable to shock stimuli. Shock sensitivity was found to be of the order of 20.0–29.2 GPa as against 18.0 GPa for control composition whereas their energetics in terms of velocity of detonation (VOD) were altered marginally. Differential scanning calorimeter (DSC) and thermogravimetry (TG) studies brought out that compositions undergo major decomposition in the temperature region of 170–240 °C.  相似文献   

18.
High explosives (RDX or HMX) are added to double–base propellant formulations to improve their energy characteristics. The influence of these HE on the catalysis of propellant combustion practically has not been discussed in the literature. The present paper considers the role of RDX and HMX in the catalysis of double–base propellant combustion. Propellants having various compositions and energy characteristics were studied experimentally. It is established that RDX and HMX decrease the burning rate of double–base propellants (without catalysts) with moderate and high calorific values irrespective of their effect on the energy and combustion characteristic of the propellants. It is shown that if the burning rate of a propellant is affected by catalysts, the addition of RDX or HMX to this propellant (in excess of 100%) does not decrease the relative efficiency of catalysis but even increases it somewhat.  相似文献   

19.
EAK基熔铸分子间炸药的能量和撞击感度   总被引:9,自引:0,他引:9  
通过水下爆炸试验研究了RDX和HMX对EAK基熔铸分子间炸药水下能量的影响。结果表明,RDX和HMX对EAK基混合炸药起到明显的增能作用,但对含铝和非含铝体系有不同的作用效果。爆速和撞击感度测定表明,EAK—RDX混合炸药爆轰的理想化程度和稳定性及撞击感度随RDX含量的增加而增加。从能量和撞击感度两个方面综合考虑,RDX的较佳加入量应为20%~30%。  相似文献   

20.
A form of RDX with a shock sensitivity comparable with that of PETN has been produced by sublimation. However, the material is as insensitive to heat, impact, friction and static discharge as are the normal forms of RDX, and it has a similar storage life. The shock sensitivity tests were performed with these explosives either cast in TNT or bonded in silicone rubber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号