首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide is shown to afford good passivation to non‐diffused silicon surfaces and boron‐diffused surfaces after a low‐temperature anneal. The passivation most likely owes to the significant levels of negative charge instilled in the films, and passivation is enhanced by illumination—advantageous for solar cells—indicating that a titanium dioxide photoreaction is at least partly responsible for the low surface recombination. We demonstrate a surface recombination velocity of less than 30 cm/s, on a 5‐Ω cm n‐type silicon, and an emitter saturation current density of 90 fA/cm2 on a 200‐Ω/sq boron diffusion. If these titanium dioxide passivated boron‐diffused surfaces were employed in a crystalline silicon solar cell, an open‐circuit voltage as high as 685 mV could be achieved. Given that TiO2 has a high refractive index and was deposited with atmospheric pressure chemical vapour deposition, an inexpensive technique, it has the potential as a passivating antireflection coating for industrial boron‐diffused silicon solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Recombination and a number of other important factors must be considered in the optimization of the diffused regions of high‐efficiency silicon solar cells. In this paper, we examine issues related to the four types of diffusions used in rear‐junction, interdigitated backside buried contact solar cells made on n‐type silicon wafers: the phosphorus‐diffused front‐surface field (FSF), the boron‐diffused emitter, and the boron and the phosphorus diffused contact regions. Dark saturation current density, effective lifetime, implied open‐circuit voltage and sheet resistance are characterized for the optimization of the above‐mentioned diffused regions. Diffusion uniformity and the avoidance of the diffusion‐induced dislocations are also discussed for the heavily diffused, metal coated contact diffusions. It is found that the optimal sheet resistances of the FSF for planar and textured surfaces are 120 Ω/□ and 105 Ω/□ respectively, whereas the optimal post‐processing sheet resistance for the boron emitter is approximately 100 Ω/□. Moreover, sheet resistance as heavy as 10–20 Ω/□ for the boron groove diffusion and 5–10 Ω/□ for the phosphorus groove diffusion have been achieved without introducing the diffusion‐induced misfit dislocations. Careful consideration of the issues discussed here led to an absolute efficiency improvement on the planar n‐type IBBC solar cell of more than 0·6%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we demonstrate single‐sided screen‐printed emitters in thin monocrystalline Czochralski silicon (Cz‐Si) wafers with an improved gettering of iron compared with conventional double‐sided POCl3 emitters. The phosphorus dopant pastes used have to be chosen carefully to provide a sufficiently low emitter sheet resistance and to avoid iron contamination. The iron concentration is determined in a non‐destructive way from the minority carrier lifetime obtained by quasi‐steady‐state photoconductance measurements, down to levels not yet demonstrated for screen‐printed emitters. In addition, the well‐known metastable boron–oxygen complexes in Cz‐Si have been transferred into a stable state by light‐induced degradation prior to these measurements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper demonstrates the potential of epitaxially grown Si wafers with doped layers for high‐efficiency solar cells. Boron‐doped 239 cm2 180–200 µm thick 2 Ω‐cm wafers were grown with and without 15 µm thick p+ layer, with a doping in the range of 1017~1018 cm−3. A layer transfer process involving porous Si layer to lift off epi‐Si wafers from the reusable substrate was used. The pp+ wafers were converted into n+pp+ passivated emitter rear totally diffused (PERT) cells by forming an oxide‐passivated POCl3‐diffused n+ emitter at the front, and oxide/nitride‐passivated epitaxially grown p+ BSF at the entire back, with local screen‐printed contacts. To demonstrate and quantify the benefit of the epi‐grown p+ layer, standard passivated emitter and rear cells (PERCs) with local BSF and contacts were also fabricated on p‐type epi‐Si wafers as well on commercial‐grade Cz wafers. Sentaurus 2D device model was used to assess the impact of the epi‐grown p+ layer, which showed an efficiency gain of ~0.5% for this PERT structure over the traditional PERC. This was validated by the cell results, which showed an efficiency of ~20.1% for the PERC, and ~20.3% for the PERT cell using epi‐Si wafers. Experimental data showed higher FF in PERT cells, largely because of the decrease in lateral resistance on the rear side. Efficiency gain, a result of higher FF, was greater than the recombination loss in the p+ layer because of the lightly doped thick p+ epi‐grown region used in this study. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In p‐type Czochralski‐grown (Cz) silicon a light‐induced degradation of the minority‐carrier lifetime is well known in the literature. Reducing the extent of this degradation would significantly improve the stable effective lifetime and thus the related performance of solar cells. In this work, the reduction of the density of the metastable defect underlying the degradation is performed by rapid thermal annealing (RTA). For a proper analysis it is extremely important to avoid contamination by the RTA furnace. Both, SiNx and SiO2 were examined as a barrier layer. A 60 nm SiNx layer was proven to act as the most effective barrier layer, allowing maintenance of a very high lifetime of 700 μs on 1.25 Ω cm p‐type FZ material. A design‐of‐experiments (DOE) study was used to analyze the effect of five process parameters on the stable effective lifetime. Especially, the plateau temperature shows a strong correlation with τd, the stable effective lifetime after light‐induced degradation. The effect of plateau temperature on τd of Cz‐ and FZ‐Si wafers is examined in the temperature range of 700–1050°C for plateau time 120 s. It was found that the stable effective lifetime of all RTA‐treated Cz‐wafers is increased compared with the initial stable effective lifetime before processing. The highest increase of stable effective lifetime (by a factor of around 2) is obtained at 900°C with a process time of 120 s. This increase in lifetime is reflected in a reduced concentration of the metastable defect. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
It has been shown that n‐type laser‐grooved buried contact solar cells exhibit a high‐efficiency potential, both on interdigitated backside buried contact (IBBC) and double‐sided buried contact (DSBC) cell structures. As the IBBC solar cell contains heavily doped, compensated regions, the shunt mechanisms are more complicated, and are different from those of the conventional front‐collecting‐junction solar cells. In this paper, several shunting mechanisms hindering the performances of the n‐type buried contact solar cells are investigated and discussed. The main shunting routes in n‐type IBBC solar cells are concluded as follows: (1) the emitter contact metal touching the n‐type substrate, which is either due to nonuniform boron deposition or diffusion‐induced misfit dislocations; (2) the base contact metal touching the p+ emitter, attributed to either the phosphorus groove diffusion being unable to compensate for the boron emitter diffusion, or the junction depth located in the diffusion overlap regions not deep enough to prevent nickel from spiking through the groove diffusion. The shunt resistance of the IBBC cells increased by more than two orders of magnitude after eliminating the shunt mechanisms discussed in this study. This led to an improvement in fill factor from 0·71–0·73 to 0·74–0·76, and an increase of average absolute efficiency of more than 0·65%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we report on ion‐implanted, high‐efficiency n‐type silicon solar cells fabricated on large area pseudosquare Czochralski wafers. The sputtering of aluminum (Al) via physical vapor deposition (PVD) in combination with a laser‐patterned dielectric stack was used on the rear side to produce front junction cells with an implanted boron emitter and a phosphorus back surface field. Front and back surface passivation was achieved by thin thermally grown oxide during the implant anneal. Both front and back oxides were capped with SiNx, followed by screen‐printed metal grid formation on the front side. An ultraviolet laser was used to selectively ablate the SiO2/SiNx passivation stack on the back to form the pattern for metal–Si contact. The laser pulse energy had to be optimized to fully open the SiO2/SiNx passivation layers, without inducing appreciable damage or defects on the surface of the n+ back surface field layer. It was also found that a low temperature annealing for less than 3 min after PVD Al provided an excellent charge collecting contact on the back. In order to obtain high fill factor of ~80%, an in situ plasma etching in an inert ambient prior to PVD was found to be essential for etching the native oxide formed in the rear vias during the front contact firing. Finally, through optimization of the size and pitch of the rear point contacts, an efficiency of 20.7% was achieved for the large area n‐type passivated emitter, rear totally diffused cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
n‐Type silicon wafers present some definite advantages for the photovoltaic industry, mainly due to the low capture cross sections of minority carriers for most metallic impurities. This peculiarity is beneficial for multicrystalline silicon (mc‐Si) wafers in which the interaction between crystallographic defects and impurities is the main source of recombination centres. Most importantly, this peculiarity could be of a great interest when mc‐Si ingots are produced directly from upgraded and purified metallurgical silicon feedstock. It is of a paramount importance to verify if the advantages of conventional n‐type silicon also characterizes n‐type wafers provided by a direct metallurgical route. It is found, in raw wafers, that minority carrier diffusion lengths are three times higher in n‐type than in p‐type wafers, when the wafers are cut from the same ingot, where the bottom is p‐type and the top is n‐type, due to the difference in the segregation coefficients of doping elements (boron and phosphorus). After different processing steps and gettering treatments the minority carrier diffusion lengths are always neatly larger in n‐type than in p‐type wafers The results confirm the interest for n‐type silicon. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Measurements of the dislocation density are compared with locally resolved measurements of carrier lifetime for p‐type multicrystalline silicon. A correlation between dislocation density and carrier recombination was found: high carrier lifetimes (>100 µs) were only measured in areas with low dislocation density (<105 cm−2), in areas of high dislocation density (>106 cm−2) relatively low lifetimes (<20 µs) were observed. In order to remove mobile impurities from the silicon, a phosphorus diffusion gettering process was applied. An increase of the carrier lifetime by about a factor of three was observed in lowly dislocated regions whereas in highly dislocated areas no gettering efficiency was observed. To test the effectiveness of the gettering in a solar cell manufacturing process, five different multicrystalline silicon materials from four manufacturers were phosphorus gettered. Base resistivity varied between 0·5 and 5 Ω cm for the boron‐ and gallium‐doped p‐type wafers which were used in this study. The high‐efficiency solar cell structure, which has led to the highest conversion efficiencies of multicrystalline silicon solar cells to date, was used to fabricate numerous solar cells with aperture areas of 1 and 4 cm2. Efficiencies in the 20% range were achieved for all materials with an average value of 18%. Best efficiencies for 1 cm2 (20·3%) and 4 cm2 (19·8%) cells were achieved on 0·6 and 1·5 Ω cm, respectively. This proves that multicrystalline silicon of very different material specification can yield very high efficiencies if an appropriate cell process is applied. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper shows for the first time a comparison of commercial‐ready n‐type passivated emitter , rear totally diffused solar cells with boron (B) emitters formed by spin‐on coating, screen printing, ion implantation, and atmospheric pressure chemical vapor deposition. All the B emitter technologies show nearly same efficiency of ~20%. The optimum front grid design (5 busbars and 100 gridlines), calculated by an analytical modeling, raised the baseline cell efficiency up to 20.5% because of reduced series resistance. Along with the five busbars, rear point contacts formed by laser ablation of dielectric and physical vapor deposition Al metallization resulted in another 0.4% improvement in efficiency. As a result, 20.9% efficient n‐type passivated emitter, rear totally diffused cell was achieved in this paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Boron and phosphorus doping of crystalline silicon using a borosilicate glass (BSG) layer from plasma‐enhanced chemical vapor deposition (PECVD) and phosphorus oxychloride diffusion, respectively, is investigated. More specifically, the simultaneous and interacting diffusion of both elements through the BSG layer into the silicon substrate is characterized in depth. We show that an overlying BSG layer does not prevent the formation of a phosphorus emitter in silicon substrates during phosphorus diffusion. In fact, a BSG layer can even enhance the uptake of phosphorus into a silicon substrate compared with a bare substrate. From the understanding of the joint diffusion of boron and phosphorus through a BSG layer into a silicon substrate, a model is developed to illustrate the correlation of the concentration‐dependent diffusivities and the emerging diffusion profiles of boron and phosphorus. Here, the in‐diffusion of the dopants during diverse doping processes is reproduced by the use of known concentration dependences of the diffusivities in an integrated model. The simulated processes include a BSG drive‐in step in an inert and in a phosphorus‐containing atmosphere. Based on these findings, a PECVD BSG/capping layer structure is developed, which forms three different n++−, n+− and p+−doped regions during one single high temperature process. Such engineered structure can be used to produce back contact solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We report results obtained using an innovative approach for the fabrication of bifacial low‐concentrator thin Ag‐free n‐type Cz‐Si (Czochralski silicon) solar cells based on an indium tin oxide/(p+nn+)Cz‐Si/indium fluorine oxide structure. The (p+nn+)Cz‐Si structure was produced by boron and phosphorus diffusion from B‐ and P‐containing glasses deposited on the opposite sides of n‐type Cz‐Si wafers, followed by an etch‐back step. Transparent conducting oxide (TCO) films, acting as antireflection electrodes, were deposited by ultrasonic spray pyrolysis on both sides. A copper wire contact pattern was attached by low‐temperature (160°C) lamination simultaneously to the front and rear transparent conducting oxide layers as well as to the interconnecting ribbons located outside the structure. The shadowing from the contacts was ~4%. The resulting solar cells, 25 × 25 mm2 in dimensions, showed front/rear efficiencies of 17.6–17.9%/16.7–17.0%, respectively, at one to three suns (bifaciality of ~95%). Even at one‐sun front illumination and 20–50% one‐sun rear illumination, such a cell will generate energy approaching that produced by a monofacial solar cell of 21–26% efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We present industrialized bifacial solar cells on large area (149 cm2) 2 cm CZ monocrystalline silicon wafers processed with industrially relevant techniques such as liquid source BBr3 and POCl3 open‐tube furnace diffusions, plasma enhanced chemical vapor deposition (PECVD) SiNx deposition, and screen printed contacts. The fundamental analysis of the paste using at boron‐diffused surface and the bifacial solar cell firing cycle has been investigated. The resulting solar cells have front and rear efficiencies of 16.6 and 12.8%, respectively. The ratio of the rear JSC to front JSC is 76.8%. It increases the bifacial power by 15.4% over a conventional solar cell at 20% of 1‐sun rear illumination, which equals to the power of a conventional solar cell with 19.2% efficiency. We also present a bifacial glass–glass photovoltaic (PV) module with 30 bifacial cells with the electrical characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The electrical properties and the minority charge carrier recombination behaviour of grain boundaries (GBs) and intragrain dislocations in different n‐type multicrystalline silicon (mc‐Si) ingots were systematically studied through microwave‐detected PhotoConductance Decay (µW‐PCD), Electron Beam Induced Current (EBIC) and PhotoLuminescence (PL) spectroscopy on as‐grown samples and on samples submitted to P‐diffusion step. It was confirmed that the overall quality of n‐type mc‐Si is high, indicating that n‐type‐Si is a valid source for photovoltaic applications. As expected, the average lifetime increases after the P‐diffusion process, which induces impurity gettering effects at the external surfaces, like in the case of p‐type samples, but an evident local increase of electrical activity of some GBs after that process was also observed using the EBIC mapping technique. Apparently, a redistribution of impurities occurs at the processing temperature and impurities are captured at the deepest sinks. In fact, while all GBs act as heterogeneous segregation/precipitation sites, some of them will compete with the external surfaces sinks, partly vanishing the effect of P‐gettering. Last but not least, it was experimentally demonstrated that the average lifetime values measured with the µW‐PCD technique well correlate with the recombination activity of GBs measured with the EBIC technique, showing the extreme importance of GBs on the effective lifetime of this material. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
We have passivated boron‐doped, low‐resistivity crystalline silicon wafers on both sides by a layer of intrinsic, amorphous silicon (a‐Si:H). Local aluminum contacts were subsequently evaporated through a shadow mask. Annealing at 210°C in air dissolved the a‐Si:H underneath the Al layer and reduces the contact resistivity from above 1 Ω cm2 to 14·9 m Ω cm2. The average surface recombination velocity is 124 cm/s for the annealed samples with 6% metallization fraction. In contrast to the metallized regions, no structural change is observed in the non‐metallized regions of the annealed a‐Si:H film, which has a recombination velocity of 48 cm/s before and after annealing. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
High and stable lifetimes recently reported for n‐type silicon materials are an important and promising prerequisite for innovative solar cells. To exploit the advantages of the excellent electrical properties of n‐type Si wafers for manufacturing simple and industrially feasible high‐efficiency solar cells, we focus on back junction n+np+ solar cells featuring an easy‐to‐fabricate full‐area screen‐printed aluminium‐alloyed rear p+ emitter. Independently confirmed record‐high efficiencies have been achieved on n‐type phosphorus‐doped Czochralski‐grown silicon material: 18·9% for laboratory‐type n+np+ solar cells (4 cm2) with shadow‐mask evaporated front contact grid and 17·0% for front and rear screen‐printed industrial‐type cells (100 cm2). The electrical cell parameters were found to be perfectly stable under illumination. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Ion implantation has the advantage of being a unidirectional doping technique. Unlike gaseous diffusion, this characteristic highlights strong possibilities to simplify solar cell process flows. The use of ion implantation doping for n‐type PERT bifacial solar cells is a promising process, but mainly if it goes with a unique co‐annealing step to activate both dopants and to grow a SiO2 passivation layer. To develop this process and our SONIA cells, we studied the impact of the annealing temperature and that of the passivation layers on the electrical quality of the implanted B‐emitter and P‐BSF. A high annealing temperature (above 1000 °C) was necessary to fully activate the boron atoms and to anneal the implantation damages. Low J0BSF (BSF contribution to the saturation current density) of 180 fA/cm2 was reached at this high temperature with the best SiO2 passivation layer. An average efficiency of 19.7% was reached using this simplified process flow (“co‐anneal process”) on large area (239 cm2) Cz solar cells. The efficiency was limited by a low FF, probably due to contaminations by metallization pastes. Improved performances were achieved in the case of a “separated anneals” process where the P‐BSF is activated at a lower temperature range. An average efficiency of 20.2% was obtained in this case, with a 20.3% certified cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Lifetime stability of gallium‐doped multicrystalline silicon wafers has been evaluated under illumination. Quality and stability of the Ga‐doped multicrystalline silicon wafers were intensively studied by means of quasi‐steady‐state photocondcutance lifetime measurement. Results show that as‐grown Ga‐doped multicrystalline silicon wafers have high lifetimes, and no significant degradation was observed under illumination. The Ga‐doped multicrystalline silicon wafers are a promising material for future photovoltaics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
We investigate the electrical properties and dopant profiles of boron emitters performed by plasma immersion ion implantation from boron trifluoride (BF3) gas precursor, thermally annealed and passivated by silicon oxide/silicon nitride stacks. High thermal budgets are required for doses compatible with screen‐printed metal pastes, to reach very good activation rates. However, if good sheet resistances and saturation current densities may be obtained, we met strong limitations of the implied open‐circuit voltage of the n‐type Czochralski silicon substrates, which is incompatible with high‐efficiency solar cells. Such limitations are not encountered with beamline where pure B+ ions are implanted. Efforts on the passivation quality may improve the implied open‐circuit voltage but are not sufficient. We provide experimental comparison between beamline and plasma immersion allowing us to discriminate the causes explaining this observation (implantation technique or ion specie used) and to infer our interpretation: The co‐implantation of fluorine seems to indirectly impact the lifetime of the core substrate after thermal annealing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Carrier selective passivated contacts composed of thin oxide, n + polycrystalline Si and metal on top of a n‐Si absorber can significantly lower the recombination current density (Jorear ≤8 fA/cm2) under the contact while providing excellent specific contact resistance (5–10 mΩ‐cm2); 25.1% efficient small area cells with photolithography front contacts on boron doped selective emitter and Fz wafers have been achieved by Fraunhofer ISE using their tunnel oxide passivated contact (TOPCon) approach. This paper shows a methodology to model such passivated contact cells using Sentaurus device model, which involves replacing the TOPCon region by carrier selective electron and hole recombination velocities to match the measured Jorear of the TOPCon region as well as all the light IV values of the cell. We first validated the methodology by modeling a 24.9% reference cell. The model was then extended to assess the efficiency potential of large area TOPCon cells on commercial grade n‐type Cz material with screen‐printed front contacts. To use realistic input parameters, a 21% n‐type PERT cell was fabricated on Cz wafer (5 Ω‐cm, 1.5‐ms lifetime). Modeling showed that the cell efficiency will improve to only 21.6% if the back of this cell is replaced by the above TOPCon, and the performance is limited by the homogenous emitter. Efficiency was then modeled to improve to 22.6% with the implementation of selective emitter (150/20 Ω/sq). Finally, it is shown that screen printing of 40‐µm‐wide lines and improved bulk material (10 Ω‐cm, 3‐ms lifetime) can raise the single side TOPCon Cz cell efficiency to 23.2%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号