首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究永久性土钉支护结构体系的抗震性能,设计并完成了土钉支护边坡1∶12比尺的振动台试验,研究了在不同支护条件(如土钉倾角、土钉长度、土钉间距等)下边坡的动力反应特征和规律.结果表明:土钉支护边坡在振动过程中,最大变形出现在边坡坡腹位置,坡趾处的位移较小;土钉支护最大作用带位于土钉支护区的中前部,呈折线形;最下面一排土钉发生最大应变的位置靠近坡面;边坡土体中部和下部的加速度放大系数较小而且比较接近,边坡上部土体的加速度放大系数较大.  相似文献   

2.
为了分析含软弱夹层粘性土坡在强降雨条件下的稳定性,结合某失稳边坡工程现场实际调研资料,基于饱和非饱和渗流与非饱和抗剪强度理论,提出了一种新的含软弱夹层粘性土坡稳定性分析方法,并利用该方法分析了强降雨条件下边坡的渗流特性及安全系数变化规律。分析结果表明:降雨入渗先在边坡软弱夹层内形成暂态饱和区,且当坡顶入渗的雨水未渗流至软弱夹层时,夹层内暂态饱和区中的雨水会沿夹层上表面向着坡顶方向渗流;降雨入渗过程中,边坡基质吸力与铅直有效应力之间存在严格的正相关变化关系;随着降雨历时的增加,塑性区首先在软弱夹层内部贯通,然后向坡顶扩展,边坡安全系数逐渐降低;降雨停止一段时间后,由于坡顶入渗雨水的补给,软弱夹层内局部将仍存在暂态饱和区,此时,塑性区面积会由坡顶向软弱夹层内部减小,再由夹层内部至坡面逐渐缩减,但边坡安全系数并未明显上升;根据数值计算结果可将粘性土坡失稳过程分为夹层软化、夹层挤压、拉伸裂缝、坡顶沉降和断裂滑移等5个阶段。因此,为了降低强降雨对边坡稳定性的影响,在含软弱夹层粘性土坡支护设计时应着重考虑边坡排水系统的合理布设。  相似文献   

3.
基于某含有软弱夹层的公路边坡工程,利用有限元软件对其开挖支护过程进行数值模拟分析,计算考虑了2种不同的开挖工况:1)只开挖不支护;2)开挖并及时支护。研究表明:在开挖未支护时,边坡开挖完成后安全系数小于1,边坡整体都发生很大位移,将沿着软弱夹层带发生破坏;在开挖并及时支护时,边坡位移明显减小,软弱夹层附近塑形变形区得到了有效控制,且开挖完成后安全系数为1.87,满足设计要求。  相似文献   

4.
以竹子坝料场边坡为实例,采用FLAC3D对开挖过程进行了动态模拟;采用强度折减法进行数值计算,得到了塑性区分布范围,并确定出了潜在滑动面;通过敏感性分析确定出c、φ值对边坡特定监测点位移的影响性强弱,并结合该点的实测位移值进行反分析确定出了潜在滑动面的力学参数。在分析锚固方式对锚固效果的影响的基础上,设计出了2种开挖支护方案。研究结果表明:采用强度折减法确定潜在滑动面是可行的,并与采用赤平投影的方式进行结构面分析取得的滑面较为接近;指定点的位移与φ之间的关系表现出了明显的线性关系,且在同一内聚力下,内摩擦角对该点位移的影响是相似的;在同一内摩擦角下,内聚力对该点位移的影响也是相似的;数值模拟方法可用于确定出特定边坡的最优锚固长度与锚固间距组合,以使建筑材料得到最优化利用。  相似文献   

5.
基于有限差分软件FLAC3D,探讨了地震作用下坡面形态对土质边坡稳定性与锚杆轴力的影响。研究表明:锚杆能有效改善边坡的抗震性能;凹形坡和平直坡坡面永久水平位移均随高程增大呈先增大后减小再增大的趋势,最大永久水平位移均发生在坡脚附近,而凸形坡坡面永久水平位移随高程增大呈持续增大的趋势;凹、凸和平直坡锚杆轴力变化规律一致,均沿锚杆杆长呈“人”字形曲线分布,即呈中间大两头小分布,在滑动面对应处的锚杆轴力最大;平直坡和凸形坡不同锚杆轴力峰值均随高程增大而逐渐减小,而凹形坡不同锚杆轴力峰值均随高程增大先减小后增大;凹、凸形边坡的锚杆轴力峰值均随坡面曲率半径减小而增大,说明凹、凸边坡坡面曲率半径越小,亦即凹、凸边坡的凹、凸起程度越大,边坡越不稳定。该研究可为相关边坡锚固支护提供参考。  相似文献   

6.
高边坡施工或运营期间常因多种因素作用导致排水孔堵塞,从而抬升地下水位,影响边坡稳定性和支护结构的安全。基于渗流折射定律,采用空气单元法模拟排水孔,开展了岩质高边坡渗流应力耦合分析,重点研究了排水孔不同堵塞工况下的坡后地下水位变化及支护结构力学响应。计算结果表明:排水孔堵塞对坡后地下水位影响显著,坡内位移整体变化不大,坡趾位置岩体变形最大;坡体锚杆轴力明显增加,最大增长幅度达到45%。对于布设深层排水孔的岩质高边坡,排水孔堵塞后边坡支护结构的位移变化明显,对支护结构的影响不容忽视,尤其体现在坡趾剪出口位置。此外,排水孔接近完全堵塞时,边坡安全系数显著降低。提出了以框架式格构和锚杆共同作为支护体系的高边坡处理措施,即下部边坡加强格构支护强度,上部边坡增加锚杆锚固长度。  相似文献   

7.
本文从围岩弹塑性理论基本方程出发,考虑形变压力,松动压力和塑性区围岩粘结力c值降低的影响,通过弹塑性理论推导,建立了塑性区半径与维持围岩塑性极限平衡所需支护抗力的关系,进一步导出了最小支护抗力和最大允许变形的计算公式,并举例说明了计算公式的应用.分析计算表明,是否考虑塑性区围岩c值降低和松动压力,对园形洞室最小支护抗力和最大允许变形计算结果有明显的影响.  相似文献   

8.
含软弱夹层煤巷层状顶板失稳机理与分类   总被引:1,自引:1,他引:0  
运用复合梁原理对含软弱夹层的煤巷层状顶板失稳模式进行理论分析,随着软弱夹层厚度的增加,顶板所受的最大拉应力逐渐变小,而且呈双曲线规律变化.软弱夹层厚度变化与围岩水平应力、位移和塑性区之间的关系进行数值模拟,研究了软弱夹层对锚杆支护煤巷层状顶板稳定性的影响.根据研究结果,以软弱夹层的厚度与其在顶板内的位置为指标对顶板进行分类,为煤巷锚杆支护参数设计提供了理论依据.  相似文献   

9.
软岩巷道锚注支护结构蠕变分析   总被引:5,自引:2,他引:3  
对锚注前软岩巷道围岩应力状态进行弹塑性分析,计算出锚注前围岩残余强度区半径;在此残余强度区内进行注浆,并将注浆区再细化为弹性区和塑性区,引入岩石蠕变的鲍尔丁-汤姆逊模型,建立了软岩巷道锚注支护结构的蠕变分析模型,采用塑性区岩体体积不变的假设,对锚注支护结构进行了黏弹性分析和黏塑性分析,推导出软岩巷道锚注支护结构应力及位移的蠕变公式.理论分析与相似模拟结果表明:软岩巷道锚注支护结构弹性区应力与时间无关,塑性区应力随时间而变化;弹性区、塑性区位移随时间的推移而不断增大,最后趋于一定值,且塑性区位移与半径成反比关系.  相似文献   

10.
以车集煤矿2901工作面为工程背景,探究了回采巷道动压区锚索强化支护机理.通过构建梯形巷道等效围岩力学结构模型,推导了巷道围岩塑性区半径公式,基于悬吊理论建立了巷道锚索支护力学结构模型.采用FLAC3D软件对比分析了单体支柱和补强锚索不同方案支护时的巷道损伤破坏特征.结果 表明:梯形巷道顶板竖直方向最大塑性区半径为5....  相似文献   

11.
川藏铁路沿线存在大量碎裂状顺层岩质边坡,与一般的边坡相比,碎裂状边坡在岩体强风化区域的结构面更多,把岩体切割的更为碎裂,导致整体的动力响应和破坏模式变得复杂。以川藏铁路拉月隧道进口边坡工程为依托,通过实地调研和参考工程地质资料,对结构面的分布规律进行了详细总结,并通过赤平极射投影对边坡的整体稳定性进行了分析。在此基础上利用离散元UDEC对碎裂状顺层岩质边坡的动力特性以及破坏模式展开研究,并探讨了节理参数对位移和加速度响应的敏感性规律。研究结果表明:(1)不同地震荷载作用下,坡面位移规律均呈现先增大再减小的规律,坡面位移响应最大处位于M4处。在输入地震波幅值相同时,Kobe波的坡面位移响应比EL波的剧烈;(2)边坡模型的PGA放大系数呈现明显的高程放大效应,地震波类型会影响PGA的响应规律;(3)FFT频谱分析表明,FFT幅值随着高程的增加呈先增大后减小再增大的规律,且强风化岩体区域的FFT幅值整体小于弱风化岩体区域。在地震波通过强弱风化交界位置的结构面时,会导致局部FFT幅值降低。(4)加载Kobe波时模型的FFT幅值比加载EL波时的大,在不同地震波作用下FFT幅值的最大位置均位于模型的M3测点处。(5)碎裂状边坡的失稳演化过程主要为:坡表震裂→形成落石→强风化岩体下部节理张开→弱风化岩体节理孕育→裂缝发展→强风化岩体区域形成贯通结构面→强风化岩体区域沿结构面下滑失稳破坏→坡脚形成堆积体。(6)节理参数敏感性分析表明,弱风化岩体区域的层理间距对位移的影响最为明显,而强风化节理间距对加速度放大影响最为明显。  相似文献   

12.
经勘探发现,乌东德拱坝右岸抗力岩体中发育有K25大型溶洞.为了探究K25溶洞对坝肩边坡安全性的影响,分析比较两种工况下的总位移分布规律、竖向位移分布规律、顺河向位移分布规律、横河向位移分布规律、主应力分布规律、塑性区分布和安全系数,并评价溶洞的支护效果.研究结果显示两种工况条件下坝肩边坡的位移和应力相差不多,表明溶洞内部填充岩体质量良好.  相似文献   

13.
以资兴高速K21段顺层岩质边坡为研究对象,借助现场调查、数值模拟研究段边坡的开挖和支护过程,对各阶段的稳定性、位移、应力等的变化规律进行分析,验证了开挖、支护设计的合理性以及边坡加固的安全性,研究了边坡在开挖支护过程中应力应变规律。结果表明,顺层岩质边坡开挖扰动开挖破坏了边坡原有的应力分布,导致岩体产生裂隙损伤和变形,并逐渐扩张,弱化岩体和层面自身的强度。同时,边坡开挖,直接破坏了边坡原有的连续受力体系,由于软弱层面的抗剪强度较低,从而导致岩层沿开挖揭露的软弱层面整体下滑。锚索框架一方面通过对坡体的位移的控制作用,增加坡体的稳定性,另一方面通过预应力锚索把层状岩体锚固在一起,使得各层之间摩阻力增大,内应力和挠度大为减少,大大提高了层面的抗剪强度。  相似文献   

14.
结构面特性对深埋隧洞的受力和变形有重要影响。以某水电站引水隧洞为例,采用数值计算方法,对结构面不同倾角以及结构面与隧洞不同距离时深埋隧洞的稳定性进行分析。结果表明:隧洞左侧水平位移与底部突起量显著小于隧洞顶部沉降与右侧水平位移;结构面倾角对隧洞各关键部位位移有较大影响,而结构面至隧洞的距离仅对拱顶及隧洞右侧最大位移有一定影响;结构面与隧洞之间的距离在3 m以内时,塑性区沿结构面方向进行扩展,而距离大于6 m后,塑性区面积和形状趋于稳定,最大塑性应变降到较低水平并保持平稳。  相似文献   

15.
地震边坡稳定性是岩土工程和地震工程中研究的重点问题之一。针对锚杆格构支护的均质土坡在地震荷载作用下的动力响应,通过振动台模型试验,分析了不同坡高地震加速度和速度响应规律、边坡位移特征及支护结构破坏特征,揭示了均质土坡及其支护结构在地震作用下的变形破坏机理。结果表明:随着振动次数的增加,边坡模型自振频率逐渐降低;低频动荷载作用下坡体上部加速度响应最大,但随着振动频率的增加,放大作用降低,即边坡对低频振动波有放大作用,而对高频振动波却有滤波作用;振动频率较小时,坡体整体速度较大,但不同高度差异较小,破坏并不明显;振动频率接近模型边坡自振频率时,坡体上部速度最大,下部速度最小,且变化明显,破坏性最大;动荷载作用过程中,滑坡体的变形模式表现为旋转位移和水平位移,滑体和基体间相对位移上部较大;支护结构破坏时,上层锚杆和中层锚杆被拔出,上部格构发生严重隆起;虽然边坡做往复运动,但最终仍有一定相对位移;在设计支护结构时,要适当加长上部锚杆的长度,并且对中、上部格构进行补强。  相似文献   

16.
根据某深基坑桩锚支护结构的支护特点及其周边环境情况,制定了相应的监测方案。重点对基坑护壁桩顶水平位移、基坑周边地表沉降及基坑附近原有建筑的位移进行监测。监测结果表明:基坑周边变形最大位置处于基坑每边的中间部位和基坑阳角处;预应力锚杆能够有效抑制支护结构的水平位移和沉降;基坑周边附近建筑物位移受基坑开挖速度、锚杆设置时间等因素影响,具有明显的时间效应和空间效应。监测结果为现场施工安全和合理组织施工提供了可靠的依据。  相似文献   

17.
目的研究放坡-桩锚支护结构变形的演化规律及力学性能.方法以沈阳地区某深基坑为例,分析放坡-桩锚支护结构变形和锚杆轴力的分布情况,采用FLAC3D软件对深基坑放坡-桩锚联合支护结构进行数值模拟,并对现场监测结果进行分析.结果土体摩尔-库伦模型可以很好地描述土体的力学特征.结论基坑四边的中点处发生水平位移最大,角点处最小;支护桩桩顶水平位移最大;地表最大沉降发生在坡顶开挖边线的位置,且水平影响范围在距基坑边缘处15 m.锚杆内力在锚杆的自由段不变,在锚固段随锚固段的增长而变小.  相似文献   

18.
为研究地震作用下不同位置和数量的拉筋带对土工格室挡墙稳定性的影响,借助FLAC3D软件,建立土工格室挡墙支护边坡数值模型,并采用振动台试验结果对数值模型进行验证,采用标定后的数值模型,系统研究了不同位置和数量的拉筋带对于边坡动力响应的影响。研究结果表明:不同布设方案下,格室约束围压沿墙高表现为“增加-减小”的两段形态;拉筋带布设位置不同,位移沿墙高分布形态不同;水平峰值加速度沿墙高呈“增加-减小-增加”的三段形态,最大值出现在坡顶处;坡顶沉降自坡肩向坡体深处呈先增加后减小的“V”型分布,最大值出现在墙体与坡面交界处;布设两层、3层和4层拉筋带时,其最优位置依次为(H/3,H)、(0,H/3,H)、(0,H/3,H/4,H);随着拉筋带数量的增加,边坡塑性区增大,但墙面永久水平位移、水平峰值加速度和坡顶沉降逐渐减小;拉筋带位置处格室约束围压和水平峰值加速度,自墙面向坡体延伸均呈先增大后减小的“人”字形分布,最大值出现在墙体与坡体交界处,墙面加速度小于墙体加速度,格室及其填料对于加速度的传播具有一定的衰减作用。该研究结果对于地震作用下土工格室柔性挡墙的抗震设计具有一定...  相似文献   

19.
为研究坡顶均布荷载作用下高边坡的稳定特征,用ABAQUS大型有限元分析软件,结合有限元强度折减法,分析了均质粘土高边坡在坡顶不同位置作用有均布荷载时,边坡稳定安全系数、坡体最大剪应力、坡体位移及潜在滑裂面的变化规律。结果表明,稳定安全系数与W/H(W为均布荷载至坡顶外缘的距离,H为坡高)呈线性关系;最大剪应力与W/H呈非线性关系;坡体沿水平方向位移与W/H呈非线性关系;潜在滑裂面为一弧形,随着荷载距离边坡边缘越远,滑裂面距边坡边缘也越远。  相似文献   

20.
具有碎石基层的沥青路面结构的非线性有限元分析   总被引:1,自引:0,他引:1  
对具有碎石基层的沥青路面结构,采用8节点等参元的弹塑性有限元模型,分析了路面结构的变形、应力及塑性区域.分析结果表明,均布车载下该结构的最大位移发生在路面面层的对称轴上,这与采用弹性层状体系设计沥青路面的最大弯沉点位置一致;最大主应力发生在沥青面层底部且最大塑性应变发生在对称轴上, 塑性影响区在离对称轴3.5倍当量圆半径的范围内.与经验公式相比,该计算结果合理,为揭示沥青路面的实际工作状态提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号