首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yttrium aluminium garnet (YAG) powders and thin films deposited on silicon substrates were prepared by an aqueous sol–gel route using metal nitrates. The sol–gel process resulted in an amorphous gel, and the thermal decomposition and successive crystallization were characterized by thermal analysis and X-ray diffraction. Powders were prepared by heat treatment of the amorphous gel, while crack-free thin films of densely packed nano-crystalline particles were obtained on silicon substrates by dip-coating technique. Photoluminescence (PL) properties as well as up-conversion (anti-stoke emission) of Er, Yb co-doped YAG phosphors were investigated. Green (555 nm) and red (650 nm) photoluminescence up-conversion emissions arising due to 4S3/2  4I15/2 and 4F9/2  4I15/2 transitions, respectively for Er3+ ion were observed. Photoluminescence and radiative life-times of the exited states of Er3+ in the visible and near IR ranges are also reported.  相似文献   

2.
The purpose of the research was to investigate crystallization behavior and sintering of cordierite synthesized by a low-price aqueous sol–gel route starting from silicic acid and magnesium and aluminum salts. Viscous sintering of the gel occurred in the temperature range of 800–850 °C, followed by μ-cordierite crystallization at about 900 °C, which proves the homogeneity of the gel. Decreasing of μ-cordierite crystallinity in a wide temperature range prior to commencing of α-cordierite crystallization at about 1200 °C indicates reconstructive type of μ- → α-cordierite transformation. The transformation was fully completed at 1350 °C. The value of the Avrami parameter indicates that μ-cordierite crystallization was controlled by surface or interface nucleation, which implies that viscous sintering occurred in the primary gel particles, which leads to shrinkage, and thereafter nucleation occurred on the surface or interface of the particles. The overall activation energy of μ-cordierite crystallization was 382.0 kJ/mol. The sinterability of the powder obtained by calcination at 1300 °C, where well-crystallized α-cordierite was formed, was better than that of the powder obtained by calcination at 850 °C, where the most intensive shrinkage occurred before the onset of crystallization of μ-cordierite.  相似文献   

3.
This work presents a fast and direct controlled routine for the fabrication of fully dense alumina based on the reactive spark plasma sintering (reactive-SPS) of boehmite (γ-AlOOH) nano-powders obtained by the sol–gel technique. The evolution of the transition aluminas during sintering has been studied. Some boehmite powders were seeded with α-Al2O3 particles prior to the gelation. Boehmite seeded powders exhibited a direct transition to α-Al2O3 at 1070 °C, enhancing the transformation kinetics and lowering the required temperature by more than 100 °C. For comparison, other samples were prepared by previously annealing the seeded and unseeded boehmite powders. Thus, α-Al2O3 powders were obtained and were sintered by standard-SPS. A detailed structural and mechanical characterization is presented, comparing the hardness and indentation fracture resistance for different grain sizes and porosities. Both the reactive-SPSed samples and the standard-SPSed samples showed a high hardness (18–20 GPa), whereas the reactive-SPSed samples exhibited a lower indentation fracture resistance due to a large grain size (~10 μm). Improvements of this procedure for obtaining smaller grain size are discussed. In summary, the presented technique brings a revolutionary fast method for the fabrication of fully dense alumina, as this process reduces the time and temperature required for alumina densification.  相似文献   

4.
Continuous fiber development is needed for high performance and high temperature composites. Various methods have been used to make ceramic fibers. In this research, composite fibers (yttrium aluminum garnet (YAG)/Al2O3) were prepared by a sol–gel method using aqueous solution. They were synthesized from aluminum salt, aluminum metal, yttrium oxide and water used as solvent. Transparent gel fibers were obtained by immersing a thin wire into the viscous sol, then pulling it out by hand. The obtained fibers contained very fine grains with diameter ranging from 10 to 80 μm after heat treatment. When yttria content was increased, the crystallization of YAG shifted to a lower temperature, whereas the transformation temperature to α-Al2O3 shifted to a higher temperature. Nevertheless, the fibers with different amounts of yttria contained alumina and YAG after heat treatment at 1400 °C. The composite fibers had vermicular structure and were denser than alumina fibers. The yttria percent concerning the limits of this study (≤10 wt%) effected on fiber diameter. As the yttria content was increased, the fiber diameter increased, whereas grain size and densification of the composite fibers decreased.  相似文献   

5.
The comparison of sintering behavior and mechanical properties of WC–10 wt.%Co, WC–10 wt.%Ni and WC–10 wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) method was accomplished using ultra-fine powder of WC and binders (Co, Ni, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC–10Co, WC–10Ni and WC–10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 min without significant change in grain size. The hardness and fracture toughness of the dense WC–10Co, WC–10Ni and WC–10Fe composites produced by HFIHS were investigated.  相似文献   

6.
7.
8.
《Ceramics International》2023,49(12):19817-19828
The Cf/SiBCN–ZrB2 composites were prepared by dipping and winding combined with reactive hot pressing. The flexural strength and fracture toughness reached 261 MPa and 11.96 MPa • m1/2, respectively, through continuous carbon fibers debonding, pulling and bridging mechanisms. Excellent mechanical properties ensured that the Cf/SiBCN–ZrB2 composites remained intact after exposure to a plasma flame with a heat flux of 9.37 MW/m2 for 300 s, with the mass and linear ablation rates of 1.78 mg/s, 1.01 μm/s, respectively. The excellent ablation resistance was due to the formation of dense oxide layers separating the matrix from the plasma flame. The SiO2 formed in the low-temperature areas away from the center was the main ablation-resistant barrier, while the ZrO2/SiO2 double oxide layer formed in the high-temperature region at the center was the major ablation-resistant barrier.  相似文献   

9.
The effect of fineness of fly ash on mechanical properties and alkali–silica reaction resistance of cement mortar mixtures incorporating fly ash has been investigated within the scope of this study. Blaine fineness of fly ash has been increased to 907 m2/kg from its original 290 m2/kg value by a ball mill. Test samples were prepared by replacing cement 20, 40 and 60%, with finer and coarser fly ashes and kept under standard and steam curing conditions until testing. Test results showed that grinding process improved the mechanical properties of all samples significantly. The beneficial effect of grinding fly ash, may increase utilization of this by-product in precast and ready-mix concrete industries. Incorporation of fly ash with different fineness values and ratios also decreased the expansions to harmless levels of cement mortars due to alkali–silica reaction.  相似文献   

10.
《Ceramics International》2020,46(7):9002-9010
Structural ceramics such as Al2O3 and Al2O3–ZrO2 composites are widely used in harsh environment applications. The conventional sintering process for fabrication of these ceramics is time-consuming method that requires large amount of energy. Microwave sintering is a novel way to resolve this problem. However, to date, very limited research has been carried out to study the effects of different ZrO2 crystal structures on Al2O3–ZrO2 composites, especially on the sintering kinetics, when fabricated by microwave sintering.The microwave hybrid sintering of Al2O3 and Al2O3–ZrO2 composites was performed in this study. Tetragonal zirconia and cubic zirconia were used as two different reinforcements for an α–alumina matrix, and the mechanical and thermal properties were studied. It was found that Al2O3 experienced a remarkable increase in fracture toughness of up to 42% when t-ZrO2 was added. Al2O3–c-ZrO2 also showed increased fracture toughness. The sintering kinetics were also thoroughly investigated, and the average activation energy values for the intermediate stage of sintering were estimated to be 246 ± 11 kJ/mol for pure Al2O3, 319 ± 71 kJ/mol for Al2O3–c-ZrO2, and 342 ± 77 kJ/mol for Al2O3–t-ZrO2. These values indicated that the activation energy was increased by the addition of either type of ZrO2, with the highest value shown by Al2O3–t-ZrO2.  相似文献   

11.
《Ceramics International》2023,49(19):31302-31312
The search for novel multifunctional alternative materials remains a prominent and active area of research in materials science. Transition-metal borides have gained significant attention due to their exceptional performance in various materials applications. However, the understanding of the Cr–Mo–B system is currently limited. In this study, we employ first-principles calculations to explore and analyse the structural properties, stability, mechanical properties, and electronic properties of fourteen ternary compounds within the Cr–Mo–B system. Our calculations demonstrate that these compounds exhibit both thermodynamic and mechanical stability, with metallic properties observed. Remarkably, the Vickers hardness values of these compounds exceed 20 GPa, signifying their classification as hard materials. The findings of our studies provide valuable insights that can facilitate experimental synthesis and validation of such materials, further advancing the field of transition-metal borides.  相似文献   

12.
《Ceramics International》2017,43(2):1904-1910
High-performance B4C–SiC nanocomposites with intergranular/intragranular structure were fabricated through spark plasma sintering assisted by mechanochemistry with B4C, Si and graphite powders as raw materials. Given their unique densification behaviour, two sudden shrinkages in the densification curve were observed at two very narrow temperature ranges (1000–1040 °C and 1600–1700 °C). The first sudden shrinkage was attributed to the volume change in SiC resulting from disorder–order transformation of the SiC crystal structure. The other sudden shrinkage was attributed to the accelerated densification rate resulting from the disorder–order transformation of the crystal structure. The high sintering activity of the synthesised powders could be utilised sufficiently because of the high heating rate, so dense B4C–SiC nanocomposites were obtained at 1700 °C. In addition, the combination of high heating rate and the disordered feature of the synthesised powders prompted the formation of intergranular/intragranular structure (some SiC particles were homogeneously dispersed amongst B4C grains and some nanosized B4C and SiC particles were embedded into B4C grains), which could effectively improve the fracture toughness of the composites. The relative density, Vickers hardness and fracture toughness of the samples sintered at 1800 °C reached 99.2±0.4%, 35.8±0.9 GPa and 6.8±0.2 MPa m1/2, respectively. Spark plasma sintering assisted by mechanochemistry is a superior and reasonable route for preparing B4C–SiC composites.  相似文献   

13.
《Ceramics International》2020,46(1):545-552
Herein, in-situ Zr3[Al(Si)]4C6-based composites with 10–40 vol% ZrB2–SiC (2-to-1 molar ratio) were prepared by hot-pressing sintering at 1850 °C. The simultaneously incorporated ZrB2–SiC constitute multicomponent reinforcements and has a synergistic effect on the matrix, which improves the sinterability, mechanical properties, and oxidation resistance of materials. It is found that both of the toughness and strength increase first and then decrease with the increasing content of ZrB2–SiC, while the hardness increases near linearly. Zr3[Al(Si)]4C6–ZrB2–SiC shows high strength (623 MPa), toughness (7.59 MPa m1/2), and hardness (18.6 GPa), which can be ascribed to the synergistic mechanisms of the binary ZrB2–SiC including fine-grained strengthening, particle reinforcement, intragranular microstructure, grain's pull-out and crack bridging, etc. In addition, the oxidation kinetics of as-prepared materials follow the parabolic law, and the composite shows a low oxidation rate of 0.87 × 10−5 kg2 m−4 s−1 when oxidized at 1400 °C.  相似文献   

14.
Transparent and colorless nanocomposite coatings were prepared from a hybrid organic–inorganic matrix and several inorganic nanofillers. The products are characterized by a high degree of self-assembling of the matrix which was prepared from an epoxy-functional organosilicon precursor and an oligomeric diamine. Unmodified and chemically modified montmorillonite, bentonite, laponite, and colloidal silica were used as nanofillers, differing in shape, size, and origin. The nanoadditive concentration in coatings was always 0.5 wt%. Solid-state NMR (13C and 29Si CP/MAS) spectroscopy was used for estimation of polyaddition and polycondensation degree in the polymer matrix in order to evaluate its structure changes caused by interaction with the nanoadditives. The influence of the kind of additive on the dynamic mechanical properties, gas permeability, and surface properties (topography, roughness) is discussed.  相似文献   

15.
《Ceramics International》2021,47(19):27334-27341
The sinterability of 3Y-TZP/TiO2 materials using micrometre-sized ZrO2 and nanometre-sized TiO2 (16 wt%) by one-step fast microwave sintering at low temperature (1200–1300 °C) was investigated. Firstly, in situ detailed analysis of the dielectric properties of the material with temperature was carried out in order to measure the capacity of the material to transform microwave energy into heat. Another related parameter associated to microwave sintering is the penetration depth of the microwave radiation into the material, which showed great homogeneity from 400 °C. Secondly, the effect of sintering conditions on microstructure, density, hardness and coefficient of thermal expansion was evaluated. The X-ray diffraction study and microstructural characterization demonstrate that it is possible to obtain fully dense pieces (>99%) by microwave sintering, a condition yielding to a coarse-grained (~1–2 μm), quite hard (~13.7 GPa) 3Y-TZP/TiO2 material. However, the most important feature is the significant reduction of the thermal expansion coefficient (8·10−6 K−1) as compared to that of 3Y-TZP. In addition, the results from conventional sintering at 1400–1500 °C with 2 and 6 h of dwell time are examined and compared. The materials obtained at 1500 °C showed high density with grain size and hardness similar to those obtained by microwave but with a dramatic difference in the power consumption of the sintering cycle, since the materials obtained by microwave used a maximum absorbed power of 120 W and a heating cycle of only 40 min.  相似文献   

16.
《Ceramics International》2020,46(17):26970-26984
This work discusses the pressureless sintering of a boron carbide-titanium diboride (B4C– TiB2) nanocomposite via in-situ reaction of the boron carbide/titanium dioxide/carbon system. Attempting to sinter pure boron carbide leads to poor mechanical properties. In this work, the effect of adding TiO2 to B4C on mechanical properties of the boron carbide was investigated. Thermodynamic simulations were performed with HSC chemistry software to determine the phases which were most likely to form during the sintering process. The reaction thermodynamics suggested that during the sintering process, formation of TiB2 occurs preferentially over formation of TiC. For examination of the microstructural evolution of the samples, Scanning Electron Microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were utilized. The density, porosity, Young's modulus, microhardness and fracture toughness of the specimens were compared. Optimum properties were achieved by adding 10 wt% TiO2. In the sample possessing 10 wt% TiO2, the relative density, Young's modulus, hardness and fracture toughness were 94.26%, 428 GPa, 23.04 GPa and 5.19 MPa m0.5, respectively, and the porosity was decreased to 5.73%. Furthermore, phase analysis via XRD confirmed that the final product was free of unreacted TiO2 or carbon.  相似文献   

17.
《Ceramics International》2020,46(6):7374-7387
Carbon/carbon (C/C) surface micropatterning is a method of modifying the surface into the complete and regular geometry. In this work, we introduce a positive effect on bonding strength between sprayed Ca–P coating and surface micropatterning C/C substrate. Interestingly, C/C substrate coated by Ca–P coating provides textured surface for a new bone ingrowth. The sprayed Ca–P coating is then subjected to microwave-hydrothermal (MH) treatment with the aim of eliminating surface defects and obtaining a uniform purity phase. These objectives were achieved in our previous study by the MH method. The molar ratio of Ca/P in the coatings is nearly close to 1, which is far below that of Ca/P for hydroxyapatite (Ca10(PO4)6(OH)2, HA, 1.67). The purpose of this article is to transform the phases in the sprayed Ca–P coating, which owns the better bioactivity and high corrosion resistance. In order to raise the molar ratio of Ca/P, the coatings are treated under high-temperature (around 700 °C). They are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a fourier transform infrared spectra (FTIR). The bonding strength (coating/substrate), biological activity and corrosion resistance of the coatings are investigated. The resulting coatings own the different microstructures and phase compositions from the original sprayed Ca–P coating. Especially, results show that the shear strength of the sprayed Ca–P coating deposited on surface micropatterning C/C substrate increases by 61% which is more than that of the coating on non-surface micropatterning C/C substrate. Additionally, high-temperature treated coating presents a good biological activity and an excellent corrosion resistance of current density (1.3078 × 10-6 A/cm2) and potential (−0.17 VSCE).  相似文献   

18.
《Ceramics International》2023,49(15):24989-25002
Multiphase ceramics have been highlighted due to the combination of different properties. This work proposes to obtain the multiphase composite of (Zr,Ti)B2–SiC based on the mixture of ZrB2, SiC, and TiO2 sintered without pressure. The effect of TiO2 addition on solid solution formation with ZrB2, densification, microstructure, and mechanical properties was investigated. For this, 2.0 wt% TiO2 was added to ZrB2–SiC composites with 10–30 vol% SiC and processed by reactive pressureless sintering at 2050 °C with a 2 h holding time. Sinterability, crystalline phases, microstructure, Vickers hardness, and indentation fracture toughness of these composites were analyzed and compared to the non-doped ZrB2–SiC samples. The XRD analysis and EDS elemental map images indicated the incorporation of Ti atoms into the ZrB2 crystalline structure with solid solution generation of (Zr,Ti)B2. The addition of TiO2 resulted in matrix grain size refinement and a predominant intergranular fracture mode. The relative densities were not significantly modified with the TiO2 addition, though a higher weight loss was detected after the sample sintering process. The composites doped with TiO2 showed an increase in fracture toughness but exhibited a slightly lower Vickers hardness compared to composites without TiO2 addition.  相似文献   

19.
《Ceramics International》2016,42(8):9995-10005
The paper discusses the development of a new material system for interconnect application in Solid Oxide Fuel Cells (SOFC) based on TiC–Ti3Al. Nano-sized TiC powders utilized in this research were synthesized using carbon coated TiO2 precursors from a patented process. The pressureless sintering of TiC–Ti3Al in a vacuum was applied at temperatures between 1100 °C and 1500 °C and content of Ti3Al was varied in the range of 10–40 wt%. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used for phase evaluation and sintering behavior. Relative density increased markedly with increasing sintering temperature because of grain growth and formation of the Ti3AlC2 secondary phase. Dense products (>95% TD) were prepared from nanosized TiC powders with 10 and 20 wt% Ti3Al, but with about 8 to 10% porosity for 30 and 40 wt% Ti3Al. The mechanical properties were determined from Vickers hardness and fracture toughness calculations. Vickers hardness decreased and fracture toughness increased with increasing Ti3Al content. The electrical conductivity and oxidation behavior of TiC–Ti3Al composites were investigated to evaluate the feasibility for SOFC interconnect application. The electrical conductivity measurements in the air at 800 °C for 100 h were made using the Kelvin 4-wire method.  相似文献   

20.
《Ceramics International》2018,44(18):22412-22420
In this work, Si3N4 ceramics were fabricated through an aqueous gelcasting method using a low–toxic monomer called N, N–dimethylacrylamide (DMAA) followed by gas pressure sintering at 1850 °C for 2 h under 6 MPa N2 atmosphere. The effect of solid loading on performance of slurries, green and sintered bodies was investigated systematically. The results show that the slurries with a solid loading as high as 50 vol% (viscosity 0.17 Pa.s at 100 s–1) were achieved. With the increase of solid loading (30–50 vol%), the green bodies exhibited a monotonically decreased, however high enough in general, flexural strength of 16.50–11.52 MPa, which was comparable to that of widely–used neurovirulent acrylamide (AM) gelling system. In regard to the sintered bodies, increasing solid loading significantly promoted sintering and improved mechanical properties and thermal conductivity as a result of the increased density, bimodal distribution structure, as well as suitable interfacial bonding strength. The best performance parameters of Si3N4 ceramics, bulk density of 3.25 g/cm3, apparent porosity of 0.67%, flexural strength of 898.92 MPa, fracture toughness of 6.42 MPa m1/2, Vickers hardness of 2.81 GPa, and thermal conductivity of 34.69 W m–1 K–1, were obtained at 50 vol% solid loading. This work renders low–toxic DMAA gelling system promising prospect in preparation of high–performance Si3N4 ceramics by gelcasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号