首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native corn starch, plasticized with water, glycerol and stearic acid, was extruded in a conical twin‐screw extruder and sheeted into 0.4–0.6 mm thick films. The effects of extrusion and plasticizers on gelatinization, as well as the molecular and structural changes, in thermoplastic starch were analyzed. The onset and peak gelatinization temperatures of extruded starch varied from 42–46°C and 52.9–56.9°C, respectively, depending on the glycerol content. The enthalpy of gelatinization of extruded thermoplastic starch in excess water varied from 3.6–7.6 J/g, which also increased with plasticizer content. Amylose‐lipid complexes were formed during extrusion, and their enthalpies depended on the initial stearic acid and moisture contents. High‐performance size‐exclusion chromatography (HPSEC) data revealed that the starch underwent fragmentation during extrusion even under highly plasticized conditions, but the degradation was not severe as compared to previous findings. The relative percentages of amylopectin and amylose in native starch were 76.9 and 23.1%, respectively, which were changed to 71.3–76.6% and 23.4–28.7% in the extrudates. The average molecular weights of amylopectin and amylose in the extrudates ranged from 1.55×107–2.07×107 and 4.35×105–7.39×105, respectively. On the other hand, the molecular weights of amylopectin and amylose in native corn starch were observed as 2.27×107 and 4.68×105, respectively. Cross‐polarization magical angle spinning (CP/MAS) and high‐power decoupling (HP‐DEC) nuclear magnetic resonance (NMR) spectra of thermoplastic starch revealed the characteristics of amylomaize starch, confirming HPSEC results that the amylopectin macromolecules underwent fragmentation into amylose‐like fractions. In the extrudates, glycerol was found to be less mobile and entrained within the starch network.  相似文献   

2.
Edible starch films were produced from pea starch and various plasticizers (mannose, glucose, fructose, and glycerol and sorbitol) at the ratio of 4.34, 6.50, 8.69, and 10.87 mmol plasticizer per gram of starch. After film specimens were conditioned at 50% relative humidity, mechanical properties (tensile strength, elongation, and modulus of elasticity), water vapor permeability (WVP), moisture content, and thermomechanical properties (G’ and tan8) were determined as a function of plasticizer concentration. At all concentration levels, monosaccharides (mannose, glucose, and fructose) made the starch films stronger (higher tensile strength) and more stretchable than polyols (glycerol and sorbitol), while WVP of monosaccharide‐plasticized starch films were lower than those of polyol‐plasticized starch films, especially at higher plasticizer concentration levels. Except for 4.34 mmol/g of mannose‐plasticized film, all the other films showed similar modulus of elasticity at the same plasticizer concentration. Polyol‐plasticized films had lower T than the monosaccharide‐plasticized films. Glucose‐ and sorbitol‐plasticized films needed more activation energy to go through glass transition than others. After all, research results showed that not only the polyols but also the monosaccharides were effective in plasticizing starch films. It is concluded that molecular size, configuration, total number of functional hydroxyl group of the plasticizer as well as its compatibility of the plasticizers with the polymer could affect the interactions between the plasticizers and starch molecules, and consequently the effectiveness of plasticization.  相似文献   

3.
Films made of potato starch were developed and glycerol as plasticizer and Tween 20, Span 80, and soy lecithin as surfactants were included in the formulation. Films were characterized with respect to water vapor permeability (WVP) and mechanical properties. The wettability of the film solutions was quantified by measuring their surface tension.The incorporation of plasticizers resulted in more flexible and manageable films and higher WVP. At low concentration, Tween 20 was the surfactant that reduced surface tension the most, while at high concentration it was lecithin. In the absence of glycerol, surfactants had a significant effect on mechanical properties, but they did not modify significantly WVP of the films. It was observed a synergistic behavior between the plasticizer and the surfactants. Films with glycerol and high level of any of the surfactants behaved as films with larger amount of plasticizer (with lower tensile strength, higher elongation, and higher WVP). Tween 20 was the surfactant that showed the most intense synergistic effect with glycerol.  相似文献   

4.
K.W. Kim    C.J. Ko    H.J. Park 《Journal of food science》2002,67(1):218-222
ABSTRACT: Tensile strength (TS), elongation (E), water vapor permeabilities (WVP) and solubilities were determined for highly carboxymethylated starch (HCMS)-based edible films plasticized with sorbitol (S), xylitol (X), mannitol (M) and glycerol (G). TS and E of HCMS-based film increased as the concentration of plasticizer S, M or × increased. TS of the HCMS-based film containing combined plasticizers were higher than those of films containing single plasticizer. The WVP of HCMS-based films seemed to decreased as the concentration of M, X or G plasticizer increased. Increasing plasticizer concentrations in HCMS-based film resulted in decreasing solubility of the films.  相似文献   

5.
The film‐forming properties of hydrophobically modified potato starch were studied to optimize coating and surface sizing formulations for improvement of barrier properties of paper and paperboard. The spontaneous fractionation of a potato starch hydrophobically modified with a quaternary dodecylammonium chloride resulted in an amylose‐rich precipitate with properties differing from those of the original starch. Film formation was investigated in the presence of glycerol and poly(vinyl alcohol) plasticizers. Anti‐plasticization was found to occur at low and intermediate plasticizer levels but highly flexible, continuous films were obtained when 30 parts of plasticizer were added to 100 parts of dry starch. The highest transparency and greatest flexibility were obtained with glycerol, while the hydrophobic film properties were maintained with poly(vinyl alcohol). A study of the glass transition temperatures and melting behavior of starch‐plasticizer films by differential scanning calorimetry gave useful information about the crystallinity of the films.  相似文献   

6.
Edible films were developed using different starch sources (corn starch and amylomaize). Starch suspensions were cold gelatinized with NaOH; either glycerol or sorbitol were used as plasticizer. Films were characterized by Differential Scanning Calorimetry (DSC), X‐ray diffraction, Scanning Electron Microscopy (SEM) and gas (CO2 and O2) permeabilities. SEM observations showed that plasticizer addition was necessary for film integrity. The evaluation of film formation by DSC indicated that cold gelatinization was the main factor of thermal transitions. Film crystallinity was analyzed by DSC and X‐ray diffraction during storage. For all tested formulations, film crystallinity increased while gas permeability decreased during storage. Films containing glycerol or sorbitol showed a lower crystalline/amorphous ratio by X‐ray diffraction and DSC than unplasticized films. Amylomaize films with higher crystalline/amorphous ratio gave lower gas permeabilities than the corresponding corn starch films; films containing sorbitol showed lower permeability values than those containing glycerol.  相似文献   

7.
Plasticized starch/clay composite films were prepared by casting aqueous solutions containing oxidized corn starch, different concentrations of glycerol as a plasticizer and 5% clay (sodium montmorillonite, Na+‐MMT) on the basis of dry starch. The water‐binding properties of the composite films were evaluated by water vapor sorption isotherms at room temperature and various relative humidities (RHs). Mechanical properties and abrasion resistance were also analyzed for the films with varying glycerol contents at 68% RH and room temperature. Changes in water sorption isotherms suggested that glycerol interacted with both water and starch in a complicated way. A saturation phenomenon of glycerol, depending on RH, was observed based on the isotherms. Above this saturation content, phase separation of the system occurred with the appearance of free glycerol. According to mechanical performance and abrasion resistance, as well as water vapor sorption of the starch blend films, the three‐stage transition was presented to be related to the state of glycerol in the blend system, i.e. adsorption of glycerol onto H‐bonding sites of starch, supersaturation of glycerol as plasticizer and further supersaturation of glycerol. Only above the supersaturation content can glycerol play a plasticizer role in starch‐based composites.  相似文献   

8.
Jang Woo Park  Seung Yong Cho 《LWT》2008,41(4):692-700
Gelatin-based edible films were produced by extruding hot melt of gelatin-based resins through a die with slot orifice and followed by heat-pressed method. The resins were plasticized with glycerol, sorbitol and the mixture of glycerol and sorbitol (MGS). The effect of type of plasticizer on extruded and heat-pressed (EHP) film-forming capacity was studied, and the mechanical and water barrier properties of resulting EHP gelatin films were compared with those of gelatin films prepared by solution casting method. Stretchable films were formed when glycerol or MGS were used as plasticizer, whereas resins plasticized with sorbitol were extruded in non-stretchable sheets. Glycerol plasticized gelatin film showed the highest flexibility and transparency among the EHP films tested. Tensile strength (TS), elongation (E) and water vapor permeability (WVP) of glycerol plasticized EHP gelatin films were 17.3 MPa, 215.9% and 2.46 ng m/m2 s Pa, respectively, and EHP gelatin films had higher E values, lower TS values and higher WVP values compared to the glycerol plasticized cast gelatin films.  相似文献   

9.
Films composed of cassava starch, chitosan and glycerol were produced by blown extrusion and employing a design for constrained surfaces and mixtures. The effects of the components of the mixture on the mechanical properties, water vapor permeability (WVP) and opacity of the films were studied. According to the models generated by the design, the concentration of starch had a positive effect in all properties. The plasticizer glycerol and its interactions with other components had a positive effect on increasing the WVP. The presence of a higher relative concentration of chitosan favored the formation of more rigid and opaque and less permeable films. In general, the concentrations of starch, chitosan and glycerol led to changes in the film properties, potentially affecting their performance. The design for constrained surfaces and mixtures proved to be a useful tool for this type of study due to the complexity of the conditions of film formation.  相似文献   

10.
以甘油、乙二醇、山梨醇和壳聚糖为塑化剂,机械活化柠檬酸淀粉酯为原料,以断裂伸长率为评价指标,通过SEM、FT-IR、TGA和接触角的分析,探讨不同塑化剂对淀粉酯成膜性能的影响。结果表明,不同塑化剂对淀粉酯的影响不同。不同塑化剂对淀粉酯膜的断裂伸长率影响为甘油>山梨醇>乙二醇>壳聚糖>原淀粉。添加塑化剂能使淀粉酯更好地成膜。SEM分析表明,以甘油和壳聚糖为塑化剂的淀粉酯膜具有更多网状结构,表面透气性好;以乙二醇和山梨醇为塑化剂的淀粉酯膜更为致密,表面相对光滑,气密性更好。FT-IR表明,淀粉酯膜均成功塑化且具有相同峰型,说明不同塑化剂的塑化机理基本相同。TGA显示,热分解温度与塑化剂分子大小及羟基含量存在密切关系。接触角分析表明,不同塑化剂对于淀粉酯膜的亲水性各不相同,其亲水性大小为山梨醇>甘油>壳聚糖>乙二醇。  相似文献   

11.
Alginate films containing dissimilar amounts of guluronate (G) and mannuronate (M): M/G∼0.45 and M/G∼1.5, soaked in a calcium chloride solution up to 20 min were evaluated for water vapor permeability (WVP). M/G∼0.45 films proved to be better moisture barriers at all calcium immersion times compared to M/G∼1.5. WVP of M/G∼0.45 and M/G∼1.5 films decreased as time of immersion in calcium increased; after 3 min, a decrease in WVP was observed. M/G∼0.45 films soaked for 1 min in calcium were further analyzed to determine the effect of plasticizer and relative humidity (RH) on their mechanical properties and WVP, using fructose, glycerol, sorbitol, and polyethylene glycol (PEG-8000). Films without plasticizer showed a lower capacity to adsorb water compared to those with plasticizer. As RH increased, tensile strength (TS) decreased and elongation (E) increased for all films. This effect was more pronounced on films containing plasticizer, which had lower TS at all RHs. Plasticizer did not increase E at 58% RH. At 78% and 98% RH, glycerol, sorbitol and fructose showed a significant increase in E compared to PEG-8000 and no-plasticizer. PEG-8000 provided lower TS and E, while glycerol showed the highest among all plasticizers. There was no difference on WVP between no-plasticizer and glycerol. Fructose and sorbitol showed the lowest WVP while PEG-8000 showed the highest.  相似文献   

12.
增塑剂对高直链淀粉基生物降解薄膜力学性能的影响   总被引:1,自引:0,他引:1  
以高直链玉米淀粉为原料,利用微波辐射加热工艺将淀粉糊化,通过溶液浇铸法制备淀粉基薄膜。探讨了不同增塑剂以及复合增塑剂对高直链淀粉基薄膜性能的影响。结果表明,甘油、山梨醇和木糖等增塑剂对淀粉的塑化作用是比较显著的。与单一的增塑剂相比,复合增塑剂所制备的材料的力学性能更加优良,尤其是甘油与木糖复合增塑所制备的淀粉基薄膜性能更好。  相似文献   

13.
Physical and mechanical properties of edible films based on blends of sago starch and fish gelatin plasticized with glycerol or sorbitol (25%, w/w) were investigated. Film forming solutions of different ratios of sago starch to fish gelatin (1:0, 2:1, 3:1, 4:1, and 5:1) were used and cast at room temperature. Amylose content of sago starch was between 32 and 34% and the protein content of the fish gelatin was found to be 81.3%. The findings of this study showed that the addition of fish gelatin in starch solutions has a significant effect (p < 0.05), resulting in films with lower tensile strength (TS) and higher water vapor permeability (WVP). On the other hand, increasing protein content (from 10.9% to 21.6%) in film samples plasticized with sorbitol showed significantly lower (p < 0.05) TS but no trend was observed in % elongation-at-break (EAB) and no differences in WVP. However, TS decreased with higher protein content in the samples when either plasticizers were used in general, but no significance differences was observed among the samples (p < 0.05) with glycerol with exception to film with high protein content (21.6%) only and no trend was observed in % EAB among samples as well. Significant difference (p < 0.05) was observed in TS and viscosity between different formulations with sorbitol. The morphology study of the sago starch/fish gelatin films showed smoother surfaces with decreasing protein in the samples with either plasticizer. DSC scans showed that plasticizers and protein content incorporated with sago starch films reduced the glass transition temperature (Tg) and melting temperature (Tm) and the melting enthalpy (ΔHm). In this study, observation of a single Tg is an indication of the compatibility of the sago starch and fish gelatin polymers to form films at the concentration levels used.  相似文献   

14.
ABSTRACT: Effects of formulation (lipid presence, type of starch, and plasticizer) on microstructure, water vapor (WVP) and gas (GP) permeabilities of films and coatings were analyzed. Plasticizer was necessary to maintain film and coating integrity and to avoid pores and cracks. Films made from high amylose starch showed lower WVP and GP than regular corn starch films; permeabilities of films with sorbitol (20 g/L) were lower than those with glycerol. The addition of 2g/L sunflower oil to the formulations decreased WVP of starch-based films; X-ray diffraction and Differential Scanning Calorimetry experiments demonstrated that films with plasticizer and lipid showed lower crystalline-amorphous ratio compared to films without additives. Microstructural observations helped explain the decrease of the film permeabilities during storage.  相似文献   

15.
Despite the increased use of extrusion technology in the production of biodegradable films, a better understanding of its effects on the several biopolymers is required. Therefore, the influence of extrusion temperature (120, 130 and 140 °C) and screw speed (25, 35 and 45 r.p.m.) on the properties of an active film formulated with starch, chitosan and oregano essential oil was investigated. Mechanical and barrier properties, apparent opacity and blow‐up ratio (BUR) of films were determined. The increase in screw speed had a positive effect on BUR and water vapour permeability (WVP) and a negative effect on opacity, tensile strength and elongation at break of the films. Low die temperatures resulted in decreased tensile strength, elongation at break, Young’s modulus and WVP of the films. Sorption isotherms of films were directly influenced by the extrusion conditions and films produced at 130 °C and 35 r.p.m. were less hydrophilic.  相似文献   

16.
The sensory attributes, mechanical, water vapour permeability (WVP) and solubility properties of cassava starch and soy protein concentrate (SPC)‐based edible films of varying levels of glycerol were studied. Addition of SPC and glycerol up to 30% and 20%, respectively, reduced stickiness and improved colour and appearance of the films. Tensile strength (TS), elastic modulus (EM) and elongation at break (EAB) of films increased, while film solubility (FS) and WVP decreased with SPC and glycerol up to 50% and 20% level, respectively, ranging from 20.33 to 26.94 MPa (TS), 41.33 to 72.76 MPa (EM), 7.90 to 12.28 MPa (EAB), 15.07 to 31.90% (FS) and 2.62 to 4.13 g H2O mm m?2 day kPa (WVP). The TS, EAB and WVP were higher for the biofilms than for low‐density polyethylene and cellophane films.  相似文献   

17.
Beef gelatin, in combination with varying levels of glycerol, was used to manufacture films by extrusion. A twin-screw co-rotating extruder was employed to produce the films and the mechanical and barrier properties of the films were investigated. Increasing the plasticizer content increased (P < 0.05) elongation at break (EAB) values but decreased (P < 0.05) tensile strength (TS) values. Oxygen permeability (OP) values for gelatin-based composite films increased (P < 0.05) as the concentration of glycerol increased. Additionally, the solubility of films in water and seal strength increased as glycerol content increased. FTIR results indicated that increasing glycerol concentration increased and displaced the peak situated around 1032 cm−1, which corresponded to glycerol. Gelatin-based composite films with a concentration of 0.2% glycerol possessed the lowest water vapor permeability (WVP) and OP values. From the data generated in this study, it is clear that the use of a plasticizing agent in film formulations should be carefully considered because of the negative effects that the plasticizing agent could have on extruded film barrier properties.  相似文献   

18.
本文旨在探究加酶挤压对小麦淀粉结构和理化性质的影响。分别设置浓度梯度为0%、0.1%、0.2%、0.5%、1%、2%的α-淀粉酶-小麦淀粉混合物样品,挤压处理后,利用扫描电镜(SEM)、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、快速粘度仪(RVA)等分析淀粉结构与理化性质的变化。结果表明:各处理组的堆积密度无显著差异(P>0.05);吸水指数与加酶量呈负相关,水合指数与加酶量呈正相关;挤压后淀粉糊化度均大幅度提高,接近完全糊化;挤压后淀粉的颗粒结构被完全破坏且加酶使得淀粉颗粒粒径更小;加酶挤压处理后相对结晶度降低,从原淀粉的17.52%降至10.29%(酶浓度2%);挤压处理后小麦淀粉的糊化焓均显著下降(P<0.05),挤压淀粉样品焓值最低,仅为0.24 J/g,加酶挤压淀粉的焓值高于挤压淀粉,随着加酶量的增加,淀粉的焓值上升至2.5 J/g左右;RVA曲线可明显看出处理组的粘度远低于原淀粉粘度,且加酶挤压样品粘度低于不加酶挤压粘度。本文探明了加酶挤压对淀粉结构和理化性质的作用规律,可为加酶挤压技术在淀粉基食品领域的应用提供理论指导。  相似文献   

19.
以高直链玉米淀粉(HACS)和壳聚糖(CS)为基本材料,甘油为增塑剂,甲基纤维素(MC)为增强剂制备可食性复合膜,研究高直链玉米淀粉与壳聚糖的质量比,甘油的添加量以及甲基纤维素的添加量对复合膜物理性能的影响,包括抗拉强度(TS)、断裂伸长率(E)、水蒸气透过系数(WVP)和色度。结果表明,壳聚糖添加量的增大与甘油添加量的增加都使高直链玉米淀粉- 壳聚糖复合膜的抗拉强度降低,断裂伸长率和WVP 显著增大,膜颜色变黄;甲基纤维素的添加改善了复合膜的机械性能和WVP,随着甲基纤维素添加量的增加,复合膜的抗拉强度和断裂伸长率都随之增大,WVP 逐渐降低,且对膜的颜色没有显著影响。  相似文献   

20.
The effect of plasticizers, glycerol, sorbitol and poly(ethylene glycol) 400 (PEG 400), on mechanical and barrier properties of rice starch film has been investigated. Sorbitol‐ and glycerol‐plasticized starch films appeared homogeneous, clear, smooth, and contained less insoluble particles compared to unplasticized rice starch films. PEG 400 did not form plasticized films of suitable characteristics. The softness and stickiness of films improved with increasing concentrations of glycerol and sorbitol. In general, films plasticized with glycerol and sorbitol displayed a better solubility in water than unplasticized films, i.e. 35% (w/w) glycerol and 45% w/w (sorbitol) (optimum solubility). The tensile strength of films decreased especially in the high concentration regime of plasticizers, between 20–45% (w/w) of plasticizer/rice starch film. Through the entire concentration regime, the tensile strength of glycerol‐plasticized films was significantly lower than that of sorbitol‐plasticized films, but their elongation was larger. The water vapor transmission rate (WVTR) through plasticized films and the oxygen transmission rate (OTR) increased with glycerol and sorbitol concentrations, however, glycerol was revealed to be significantly more effective in reducing the tensile strength as well as increasing the WVTR and the OTR compared to sorbitol. With the higher tensile strength and the smaller OTR and WVTR, the 30% sorbitol‐plasticized film reveals an improved coating performance in terms of a reduction of coating failures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号