首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature (Tg) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, Tg values were very similar, irrespective of the curing method.  相似文献   

2.
Reactive energetic plasticizers (REPs) for use in glycidyl azido polymer (GAP) based polyurethane (PU) energetic binders were investigated. These REPs consisted of an activated terminal alkyne group that was expected to give rise to Huisgen azide‐alkyne 1,3‐dipolar cycloaddition within the specific pot life for a PU formulation to prevent the migration of plasticizers, and with a gem‐dinitro group as an energy resource. A quantitative miscibility investigation between the plasticizers and uncured GAP showed that REPs exhibited better miscibility than conventional energetic plasticizers. The plasticization effect of the REPs on the GAP prepolymer with respect to the reduction of the viscosity illustrated REPs can effectively reduce the viscosity of the GAP prepolymer from 6,015 cP to 150–240 cP at the processing temperature when 50 wt‐% of REP was added. A comparison of the click reactivity and activation energies (Ea) of REPs and GAP prepolymer elucidated that the reactivity of azide‐alkyne cycloaddition depended on the dipolarophilicity of REPs which could be controlled by adjusting the length of methylene spacer between electron‐withdrawing groups (EWG) and neighboring alkynes in REPs. Thermogravimetric analysis manifested REP/GAP‐based PU binders maintained the thermal stability of the control GAP‐based PU binder. The mechanical properties and impact insensitivity of the GAP‐based PU binders were also improved by the incorporation of REPs.  相似文献   

3.
Composite rocket propellants prepared from nitramine fillers (RDX or HMX), glycidyl azide polymer (GAP) binder and energetic plasticizers are potential substitutes for smokeless double‐base propellants in some rocket motors. In this work, we report GAP‐RDX propellants, wherein the nitramine filler has been partly or wholly replaced by 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7). These smokeless propellants, containing 60% energetic solids and 15% N‐butyl‐2‐nitratoethylnitramine (BuNENA) energetic plasticizer, exhibited markedly reduced shock sensitivity with increasing content of FOX‐7. Conversely, addition of FOX‐7 reduced the thermochemical performance of the propellants, and samples without nitramine underwent unsteady combustion at lower pressures (no burn rate catalyst was added). The mechanical characteristics were quite modest for all propellant samples, and binder‐filler interactions improved slightly with increasing content of FOX‐7. Overall, FOX‐7 remains an attractive, but less than ideal, substitute for nitramines in smokeless GAP propellants.  相似文献   

4.
GAP and nitrate ester compounds are introduced into the solid propellant formulation as energetic binders and energetic plasticizing agents, respectively, to further enhance the energy level of solid propellants. However, under abnormal thermal conditions, various components within GAP propellants, especially nitrate ester plasticizers, can collectively result in the generation of a large number of voids within the propellant due to factors such as thermal stress and slow component decomposition. This phenomenon can impact the safety of solid rocket engines, necessitating research into their thermal decomposition processes and thermal damage structures. In this study, the thermal decomposition characteristics and gas products of GAP propellants with different nitrate ester plasticizer formulations were investigated using DSC-TG and FT-IR. The damage structure of GAP propellants heated under unignited conditions was studied through Micro-CT, examining the influence of heating conditions and nitrate ester plasticizers on the thermal damage structure of GAP propellants. During heating, the thermal damage structure of GAP propellants was found to include voids generated within the GAP binder and cracks at the interface between the GAP binder and particles, with nitroglycerin as a plasticizer exacerbating the thermal damage of GAP propellants (about 2.2–2.9 times).  相似文献   

5.
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP‐based binders, which are of potential interest for the development of high‐performance energetic propellants. The glass transition temperature (Tg) and decomposition temperature (Td) of pure GAP were found to be −45 and 242°C, respectively. The energy released during decomposition (ΔHd) was measured as 485 cal/g. The effect of the heating rate on these properties was also investigated. Then, to decrease its Tg, GAP was mixed with the plasticizers dioctiladipate (DOA) and bis‐2,2‐dinitropropyl acetal formal (BDNPA/F). The thermal characterization results showed that BDNPA/F is a suitable plasticiser for GAP‐based propellants. Later, GAP was crosslinked by using the curing agent triisocyanate N‐100 and a curing catalyst dibuthyltin dilaurate (DBTDL). The thermal characterization showed that crosslinking increases the Tg and decreases the Td of GAP. The Tg of cured GAP was decreased to sufficiently low temperatures (−45°C) by using BDNPA/F. The decomposition reaction‐rate constants were calculated. It can be concluded that the binder developed by using GAP/N‐100/BDNPA/F/DBTDL may meet the requirements of the properties that makes it useful for future propellant formulations. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 538–546, 2000  相似文献   

6.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

7.
Very few efficient bonding agents for use in solid rocket propellants with nitramine filler materials and energetic binder systems are currently available. In this work, we report the synthesis, detailed characterization, and use of neutral polymeric bonding agents (NPBA) in isocyanate‐cured and smokeless composite rocket propellants based on the nitramine octogen (HMX), the energetic binder glycidyl azide polymer (GAP), and the energetic plasticizer N‐butyl‐2‐nitratoethylnitramine (BuNENA). These polymeric bonding agents clearly influenced the viscosity of the uncured propellant mixtures and provided significantly enhanced mechanical properties to the cured propellants, even at low NPBA concentrations (down to 0.001 wt‐% of propellant). A modified NPBA more or less free of hydroxyl functionalities for interactions with isocyanate curing agent provided the same level of mechanical improvement as regular NPBA containing a substantial number of reactive hydroxyl groups. However, some degree of reactivity towards isocyanate is essential for function.  相似文献   

8.
The development of energetic binders with suitable energetic plasticizers is required to enhance the mechanical properties and to reduce the glass transition temperature of propellant and explosive formulations. The compatibility of the energetic binder poly(3‐nitratomethyl‐3‐methyloxetane) (polyNIMMO) with five different energetic plasticizers viz. bis(2,2‐dinitro propyl)acetal (BDNPA), dinitro‐diaza‐alkanes (DNDA‐57), 1,2,4‐butanetriol trinitrate (BTTN), NN‐butyl‐N ‘(2‐nitroxy‐ethyl) nitramine (BuNENA) and diethyleneglycoldinitrate (DEGDN) was studied by differential scanning calorimetry (DSC), rheology, and DFT methods. The results obtained for the pure binder were compared with the results obtained for the binder/plasticizer blend in regard of the decomposition temperature and the format of the peak indicated the compatibility of polyNIMMO with the plasticizers. The glass transition temperatures of the blends were determined by low temperature DSC and showed desirable lowering of glass transition temperature with single peak. The rheological evaluation revealed that the viscosity of the binder is considerably lowered by means of flow behavior upon addition of 20 % (w/w) plasticizer. The addition of BuNENA and DEGDN has maximum effect on the lowering of viscosity of polyNIMMO. The predicted relative trend of interaction energies between plasticizer and binder is well correlated with the corresponding trend of viscosity of binder/plasticizer blends. These experimental studies verified by theoretical methods are valuable to design practical blends of new plasticizers and binders.  相似文献   

9.
Currently formulated propellants comprise RDX and polymeric binders, such as hydroxy‐terminated polybutadiene (HTPB) and cellulose‐acetate butyrate (CAB) as well as the energetic substances glycidyl azide polymer (GAP) and nitrocellulose (NC). Propellants based on GAP are often brittle if they are formulated with a high content of cyclotrimethylene trinitramine (RDX) and due to the usually insufficient mechanical properties of GAP. On the other hand formulations based on RDX and NC may exceed the tolerable burning temperature with increasing RDX concentration. Therefore, in this study propellants with a high force and with relatively low burning temperature has been formulated by using a compound of NC and GAP as energetic binder. According to thermodynamic calculations GAP/NC composite propellants can be formulated with up to 15 percent more specific energy than seminitramines at the same burning temperature. By choosing appropriate polymerization conditions chemical stable compositions can be produced. ARC experiments give evidence that at temperatures from 120°C to 160°C the binder decomposes similar to NC. At higher temperatures the behaviour switches from NC type to GAP type decomposition. In comparison to GAP bound propellants the compressive strength of propellants bound by the GAP/NC compound can be significantly increased by up to 420 percent at room temperature. Although the examined seminitramine propellants bound with NC show a compressive strength which is about 10 percent higher at room temperature, the GAP/NC compositions are quite superior at elevated temperature.  相似文献   

10.
Chitosan (Ch) and N‐carboxymethylchitosan (N‐CMCh) films were prepared by the casting method at concentrations of 1% and 2% of polymer, with or without plasticizer: polyethylene glycol (PEG‐400) and glycerol (G), at 15% (w/w). The influence of composition on mechanical properties, water vapour transmission rate (WVTR), water saturation, and aqueous dissolution of the films was analysed. The thermal stability of the mixture (polymer:plasticizer, 1:1) was evaluated by thermogravimetric analysis (TGA). In general, all the properties were affected by the plasticizers. The plasticized films showed lower strength and a higher percentage of elongation (%E), in the following order: G > PEG‐400 > unplasticized film. The total WVTR increased with Ch concentration, with a different WVTR profile for Ch and N‐CMCh. While the PEG‐400 addition did not significantly modify the WVTR profile of films, the glycerol enhanced the transport of water vapour through both polymers. The plasticizer addition increased the time of water film saturation, in the following order: G > PEG‐400 > unplasticized film; this was more pronounced in the N‐CMCh films, probably due to the formation of hydrogen bonds. The solubility of the films was also affected by their composition. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
A solid rocket propellant based on glycidyl azide polymer (GAP) binder plasticized with nitrate esters and oxidized with a mixture of ammonium nitrate (AN) and triaminoguanidine nitrate (TAGN) was formulated and characterized. Non‐lead ballistic modifiers were also included in order to obtain a propellant with non‐acidic and non‐toxic exhaust. This propellant was found to exhibit a burning rate approximately twice that of standard GAP/AN propellants. The exponent of the propellant is high compared to commonly used composite propellants but is still in the useable range at pressures below 13.8 MPa. This propellant may present a good compromise for applications requiring intermediate burn rate and impulse combined with low‐smoke and non‐toxic exhaust.  相似文献   

12.
以聚双叠氮甲基氧杂环丁烷(PBAMO)为硬段,聚缩水甘油醚(GAP)为软段,采用一锅法扩链合成了含能聚氨酯黏合剂(GAP/PBAMO).实验中合成了不同硬段含量的黏合剂,并采用FT-IR、NMR、GPC、XRD、DSC和SEM等对其结构和性能进行了表征.结果表明,硬段质量分数为66.7%时,该热塑性黏合剂具有较好的耐热...  相似文献   

13.
Traditional composite rocket propellants are cured by treatment of hydroxyl‐terminated prepolymers with polyfunctional aliphatic isocyanates. For development of smokeless composite propellants containing nitramines and/or ammonium dinitramide (ADN), energetic binder systems using glycidyl azide polymer (GAP) are of particular interest. Polyfunctional alkynes are potential isocyanate‐free curing agents for GAP through thermal azide‐alkyne cycloaddition and subsequent formation of triazole crosslinkages. Propargyl succinate or closely related aliphatic derivatives have previously been reported for such isocyanate‐free curing of GAP. Herein, we present the synthesis and use of a new aromatic alkyne curing agent, the crystalline solid bisphenol A bis(propargyl ether) (BABE), as isocyanate‐free curing agent in smokeless propellants based on GAP, using either octogen (HMX) and/or prilled ADN as energetic filler materials. Thermal and mechanical properties, impact and friction sensitivity and ballistic characteristics were evaluated for these alkyne cured propellants. Improved mechanical properties could be obtained by combining isocyanate and alkyne curing agents (dual curing), a combination that imparted better mechanical properties in the cured propellants than either curing system did individually. The addition of a neutral polymeric bonding agent (NPBA) for improvement of binder‐filler interactions was also investigated using tensile testing and dynamic mechanical analysis (DMA). It was verified that the presence of isocyanates is essential for the NPBA to improve the mechanical properties of the propellants, further strengthening the attractiveness of dual cure systems.  相似文献   

14.
In recent years, much research effort has been driven to develop alternative plasticizers for medical and commodity plastic materials. In this study, a modified natural plasticizer, synthesized by esterification of rice fatty acids, was modified by epoxidation with peroxy acid generated in situ. Two natural epoxidized plasticizers were obtained, using peracetic acid (NP‐Ac) and peroctanoic acid (NP‐Oc) as reagent. PVC films after addition of these natural epoxidized plasticizers presented fairly good incorporation and plasticizing performance, as demonstrated by results of mechanical properties, Tg values (as shown by DSC), optical microscopy, exudation, and migration tests, FTIR and X‐ray diffraction obtained for plasticized PVC films. NP‐Ac plasticizer presented enhanced plasticizing performance compared with NP‐Oc, probably due to a higher epoxidation degree obtained in the reaction with peracetic acid. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Poly(lactic acid) (PLA) has received great attention recently due to its good physical and mechanical properties such as high tensile strength and modulus, good processability and biodegradability. In this study, low molecular weight poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) were used as hybrid plasticizers to improve toughness and ductility of PLA. Using the solubility parameter, a tentative evaluation of the hybrid plasticizer that could act as the most effective plasticizer for PLA has been performed and the obtained results have been corroborated with the materials physical properties. Excellent plasticizing effect was obtained by hybrid plasticizer PEG:EPO with ratio 2:1. Addition of PEG:EPO (2:1) hybrid plasticizer to PLA shows a significant improvement of 12,402%, compared to neat PLA. The improvement in flexibility and decrease in rigidity for the plasticized PLA is well evidenced by lower glass transition temperature (Tg) and tensile modulus values. In relation to the thermal stability, a decrease in thermal properties of the hybrid plasticized PLA was observed due to the volatility of the plasticizers. Scanning electron microscopy (SEM) shows that the hybrid plasticizer was turned PLA's smooth surface to fibrous structure and rough fracture surface. POLYM. ENG. SCI., 56:1169–1174, 2016. © 2016 Society of Plastics Engineers  相似文献   

16.
Bis‐propargylhydroquinone (BPHQ) is an alkyne functionalized isocyanate‐free curing agent for hydroxyl terminated azido polymers. Conventionally, glycidyl azide polymer (GAP) is cured by isocyanate based curatives, which are toxic and hygroscopic in nature. The reaction between hydroxyl end group of GAP and isocyanate is highly sensitive to moisture causing voids in the propellant, leading to poor mechanical properties. Herein, an alternate approach was adapted to exploit 1,3‐dipolar cycloaddition reaction between azido group of GAP and the triple bond (–C≡CH) of BPHQ without catalyst at 50 °C forming triazole crosslinked polymer. The curing behavior of GAP‐BPHQ system was studied by rheological method and based on the results the gel time was determined. In addition, the reaction between GAP and BPHQ was carried out with various GAP/BPHQ ratios (0.9 to 2.5) and effects on mechanical properties of resulting triazole polymers were investigated. Post curing hardness of GAP‐BPHQ binder system was tested by surface Shore‐A hardness measurement. The compatibility of BPHQ with energetic oxidizers such as ammonium dinitramide (ADN) and hydrazinium nitroformate (HNF) were also studied by differential scanning calorimetery (DSC) technique and showed good compatibility. The activation energy (E a) of cured GAP‐BPHQ binder was evaluated by DSC using Ozawa and Kissinger methods and are found to be 33.55 and 33.16 kcal mol–1, respectively. The advantage of this curing system between GAP and BPHQ is unaffected by moisture as compared to isocyanate based urethane systems and also no need to control humidity during the processing of propellant. The experimental results reveal that triazole crosslinked polymer system could be a better choice to develop novel energetic binder systems for explosives as well as propellants composition with improved performance and eco‐friendly nature.  相似文献   

17.
Protein‐based polymeric resin has been developed from nonconventional and nonedible “neem seed cake (NSC)” that has very limited low‐value applications. Neem protein (NP), after extraction from defatted NSC, was used to prepare resin with two common plasticizers (glycerol and sorbitol). Properties of the NP resin sheets were evaluated as a function of plasticizer content. Increase of plasticizer content in NP sheets from 15 to 30% (w/w) enhanced fracture strain with a reduction in tensile strength, modulus, and thermal properties. Sorbitol‐plasticized NP sheets showed better mechanical and thermal properties in comparison to glycerol‐plasticized sheets. Effect of cross‐linking with glyoxal on the mechanical and thermal properties of sorbitol‐plasticized NP sheets was also investigated. Properties improved significantly at 10% (w/w) glyoxal content. Overall, with the enhanced properties of NP sheets, NP can be a viable alternative for edible protein‐based resin for making green composites. NP resin can also be used to replace some synthetic resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 10.1002/app.41291.  相似文献   

18.
叠氮增塑剂与GAP黏合剂的相容性模拟计算   总被引:1,自引:0,他引:1  
叠氮含能化合物在提高推进剂能量、改善燃烧性能、降低特征信号等方面优势明显,研究叠氮增塑剂与GAP的相容性可以促进叠氮含能化合物在推进剂中的应用。对6种叠氮含能化合物的生成热、玻璃化转变温度等进行了计算分析,探讨了它们作为含能增塑剂的使用性能。通过分子动力学模拟,发现6种叠氮化合物对内聚能密度和溶解度参数的贡献以范德华作用力为主,其贡献值约为静电力贡献值的1.03.0倍。计算得到的目标叠氮化合物的溶解度参数与分子结构中的极性基团存在一定的正相关性,即极性基团含量越高,溶解度参数值越大。模拟模型中N100在GAP中的混溶均匀性都没有IPDI和MDI好,但GAP/N100、GAP/IPDI、GAP/MDI的溶解度参数均与纯GAP的相近。叠氮增塑剂DEGBAA与GAP、GAP/N100、GAP/IPDI、GAP/MDI之间的互溶性较理想,PEAA和TMNTA次之。DEGBAA的Tg和黏度都较低,更适合作GAP基推进剂的含能增塑剂。  相似文献   

19.
Ammonium dinitramide (ADN) is a high performance solid oxidizer of interest for use in high impulse and smokeless composite rocket propellant formulations. While rocket propellants based on ADN may be both efficient, clean burning, and environmentally benign, ADN suffers from several notable disadvantages such as pronounced hygroscopicity, significant impact and friction sensitivity, moderate thermal instability, and numerous compatibility issues. Prilled ADN is now a commercially available and convenient product that addresses some of these disadvantages by lowering the specific surface area and thereby improving handling, processing, and stability. In this work, we report the preparation, friction and impact sensitivity and mechanical properties of several smokeless propellant formulations based on prilled ADN and isocyanate cured and plasticized glycidyl azide polymer (GAP) or polycaprolactone‐polyether. We found such propellants to have very poor mechanical properties in unmodified form and to display somewhat unreliable curing. However, by incorporation of octogen (HMX) and a neutral polymeric bonding agent (NPBA), the mechanical properties of such smokeless formulations were significantly improved. Impact and friction sensitivities of these propellants compare satisfactorily with conventional propellants based on ammonium perchlorate (AP) and inert binder systems.  相似文献   

20.
研究了硝胺种类、固体组分含量和粒度、增塑剂与GAP的增塑比及燃速催化剂对GAP高能低特征信号推进剂在11~19MPa下燃烧性能的影响。结果表明,当HMX取代推进剂样品中的RDX时,推进剂的燃速较高,压强指数从0.72降至0.63;在AP和HMX总质量分数为67.5%的条件下,随着AP质量分数由5%增至30%,推进剂燃速逐渐增大,压强指数由0.82降至0.45;减小AP粒度以及在配方中添加燃速催化剂或调节过渡金属化合物J1/J2的配比,可较大幅度地增加推进剂燃速和降低压强指数,其中,J1与J2总质量分数为3%,二者质量比为2∶1和1∶1时,推进剂的压强指数较小,分别为0.50和0.48;随着HMX粒度减小及增塑剂与GAP黏合剂的增塑比的降低,推进剂的燃速和压强指数降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号