首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PVC/Poly(ε‐caprolactone) (PCL)/organophilic‐montmorillonite (OMMT) and PVC/Polylactide (PLA)/OMMT nanocomposites were prepared by a two‐step process. PCL/OMMT and PLA/OMMT master batches were prepared by melt blending using a two‐roller mill first, and then they were blended with PVC via extrusion. PVC/OMMT nanocomposites were also prepared using a two‐roller mill. Morphology, mechanical properties, and thermal stability were investigated. The formation of exfoliated or intercalated nanocomposites was confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Only the PVC/PCL/OMMT nanocomposite showed both higher tensile strength and stiffness than unfilled PVC. Atomic force microscopy (AFM) indicated dependency of this behavior not only on the clay dispersion, but also on the adhesion between the OMMT and the polymer matrix. Furthermore, scanning electron microscopy (SEM) showed that the large plastic deformation of the PVC/PCL matrix also contributed to the strength increase of the PVC nanocomposites. The effect of PCL/OMMT on the improvement of the thermal stability of PVC was remarkable while the effect of PLA/OMMT was moderate. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   

2.
含羧基有机蒙脱土/天然橡胶纳米复合材料的结构与性能   总被引:3,自引:0,他引:3  
通过蒙脱土与酸化椰油酰胺基丙基甜菜碱(CAB)进行正离子交换,制备了含羧基的有机蒙脱土(OMMT),用OMMT与天然橡胶(NR)复合制得插层型纳米复合材料。对OMMT的结构进行了表征,研究了OMMT对NR/OMMT纳米复合材料结构与性能的影响。结果表明,酸化CAB溶液改性OMMT的层间距较蒙脱土改性者有较大幅度的增加;少量OMMT可改善NR的拉伸强度和扯断伸长率,同时维持较低的拉伸永久变形;OMMT对复合材料的硫化表现出促进作用,但其含量对复合材料的硫化特性影响不大。  相似文献   

3.
采用熔融插层法制备了聚乳酸/有机改性纳米蒙脱土(PLA/OMMT)复合材料,对其复合结构、力学性能、热性能、动态流变性能进行了测试和表征,并研究了复合材料的挤出发泡行为。结果表明,不同含量的OMMT与PLA进行熔融插层会形成不同的插层与剥离结构;3 %的OMMT可以提高PLA的力学性能、改善热性能;OMMT能够提升PLA的熔体强度,同时在挤出发泡过程中起到成核剂的作用,并且能够减弱发泡剂气体向PLA熔体外部的扩散,从而提高PLA挤出发泡的效果。  相似文献   

4.
The aim of this study is to evaluate the biodegradable packaging materials which will be an alternative to traditional synthetic packaging materials. For this purpose, packaging films containing polycaprolactone (PCL), montmorillonite (MMT), and organically modified montmorillonite (OMMT) were prepared by solution casting method, and the mechanical, physical, structural, antimicrobial, and antifungal properties of these films were examined. Cetyl trimethyl ammonium bromide (CTAB) was used for the modification of montmorillonite. The structural properties of the prepared films were characterized by attenuated total reflection-Fourier transform infrared, X-ray powder diffraction, thermogravimetric analysis, and scanning electron microscopy. The PCL/OMMT structure was found to be thermally more stable than the PCL/MMT structure. The addition of OMMT to PCL improved the thermal and mechanical properties of the films compared with the pure PCL and PCL/MMT films. In addition, adding MMT/OMMT to the PCL caused an increase in the hardness of the films. In the antimicrobial analysis, while no inhibition effect was observed in PCL/MMT films, PCL/OMMT films showed inhibition effect against Staphylococcus aureus. Antifungal tests performed with the prepared films showed that the film-wrapped bread did not deteriorate for 40 days. It is thought that PCL/MMT and PCL/OMMT films prepared in this study will provide an advantage in applications as packaging material.  相似文献   

5.
Poly(lactic acid)/poly(ε‐caprolactone)/organically modified montmorillonite (PLA/PCL/OMMT) nanocomposites were melt‐processed in a twin‐screw extruder under high shear conditions. As a result of the processing conditions employed, the OMMT layers located in the less compatible PCL phase in all the ternary nanocomposites. The morphology of the PLA/PCL blend evolved from “sea‐island” to co‐continuous upon the addition of OMMT. Both the X‐ray diffraction (XRD) and viscoelastic characterization suggested similar OMMT dispersion in the reference PLA binary and in the PLA/PCL ternary nanocomposites, regardless of its location in the PLA and PCL phase, respectively. The reinforcing effect of the organoclay was also similar. The addition of OMMT to the PLA/PCL blend fully compensated the loss in stiffness and oxygen barrier performance produced by PCL in PLA; the nanocomposite with 3% OMMT showed the same modulus and permeability values as those of pure PLA. Moreover, the ductile behavior (elongation at break > 80%) of the PLA/PCL blend remained constant even in the nanocomposite containing 5% OMMT. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43815.  相似文献   

6.
This study investigated the influence of montmorillonite (MMT) content on the mechanical/thermal properties of microcellular injection‐molded polylactide (PLA)/clay nanocomposites. Carbon dioxide was the blowing agent. The PLA/MMT nanocomposites were prepared by twin screw extrusion. The results showed that as MMT content is increased, tensile strength, impact strength, and cell density decrease. This is caused by the speed degradation of PLA due to the addition of MMT. MMT decreases the crystallization temperature but increases the decomposition temperature of the nanocomposites. The XRD results showed that the layer spacing of the clay increases as MMT content increases. TEM pictures showed that the MMT is well dispersed within the PLA matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

7.
赛华捷  张玉霞 《中国塑料》2019,33(1):133-146
介绍了蒙脱土(MMT)的一次有机改性和二次有机改性方法,并重点介绍了其在聚乳酸(PLA)中的应用。二次改性能有效改善有机改性蒙脱土(OMMT)在PLA中的分散状况,使之尽可能多地形成剥离结构;在性能改善方面,OMMT的添加能有效改善PLA的结晶性能、拉伸模量和冲击强度、热稳定性、阻透性能以及流变性能等。  相似文献   

8.
Poly(methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by different modification agents [dioctadecyl dimethyl ammonium chloride (DODAC) and methacrylatoethyltrimethyl ammonium chloride (MTC)] and different modification method (cation‐exchange reaction and grafting reaction), ultimately giving rise to five kinds of organomodified MMT (OMMT). The structure of the OMMT was studied by Wide angle X‐ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). Meanwhile, the structure of the PMMA/MMT nanocomposites microspheres was also investigated by WAXD. The molecular weight of the polymers extracted from PMMA/MMT nanocomposites was measured by gel permeation chromatograph (GPC). Finally, the mechanical properties of these PMMA/MMT nanocomposites were studied in detail. It was found that large interlayer spacing (d001) of OMMT could not entirely ensure an exfoliated structure of resultant PMMA/MMT nanocomposites, while OMMT with relative small d001 could still yield exfoliated structure as long as the compatibility between OMMT and polymer matrix was favorable. In addition, the results of mechanical investigation indicated that the compatibility between OMMT and PMMA matrix turned out to be the dominant factor deciding the final mechanical properties of PMMA/MMT nanocomposites. POLYM. COMPOS., 37:1705–1714, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
A novel organically modified montmorillonite (OMMT) based on a bifunctional organic modifier‐12‐aminolauric acid (ALA) was synthesized. Polylactide (PLA) nanocomposites with this new and traditional OMMT were prepared by solution casting method. The effects of the organic modifiers on structure, morphology and thermal properties of PLA nanocomposites have been investigated using Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicate that ALA has distinct effects on the dispersion of MMT platelets into the PLA matrix, where partial exfoliated as well as intercalated structures have been obtained, when compared with ordinary modifier, cetyltrimethyl ammonium bromide (CTAB). TGA data verifies that PLA nanocomposites with ALA‐MMT organoclay display enhanced thermal stability. The optimal clay loading of ALA‐MMT occurs at 3%wt, leading to the best compromise between clay dispersion and thermal properties. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The nonlinear viscoelastic properties of PLA/PCL blends with and without clay (montmorillonite, MMT) under large amplitude oscillatory shear (LAOS) flow were investigated. The G′ and G″ as a function of strain amplitude, Lissajous plots and FT-rheology methods were used to interpret nonlinear behavior of PLA/PCL blends with and without MMT. Additionally, scanning electron microscopy (SEM) images of PLA/PCL with MMT blends were taken to investigate the effects of clay on the internal structure of the PLA/PCL blends. A relationship between morphological changes and linear and nonlinear rheological properties was observed. SEM image analysis revealed that clay acted as a compatibilizer and then reduced the size of droplets in the PCL domain of the PLA matrix. As a result, nonlinear properties sensitively reflect morphological changes with increasing MMT amount. The nonlinear rheological properties of PLA/PCL/MMT/metallocene-LLDPE (mLLDPE) were also investigated when mLLDPE was used as an impact modifier to improve mechanical properties, and the nonlinear rheological properties of PLA/PCL/MMT and PLA/PCL/MMT/mLLDPE were also compared.  相似文献   

11.
蒙脱土改性酚醛树脂复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
为提高酚醛树脂(PF)的热稳定性,利用原位插层法制备了PF/蒙脱土(MMT)、PF/有机化蒙脱土(OMMT)纳米复合材料,并比较了PF、PF/OMMT或PF/MMT经高温热处理后的力学性能和导电性能.研究表明,与PF复合后,OMMT和MMT都形成了剥离型的片层结构.与PF/OMMT复合材料相比,PF/MMT的质量保持率...  相似文献   

12.
In this study, montmorillonite (MMT)/poly(?‐caprolactone)‐based polyurethane cationomer (MMT/PCL‐PUC) nanocomposites were prepared and their mechanical properties, thermal stability, and biodegradability were investigated. PCL‐PUC has 3 mol % of quaternary ammonium groups in the main chain. The MMT was successfully exfoliated and well dispersed in the PCL‐PUC matrix for up to 7 wt % of MMT. The 3 mol % of quaternary ammonium groups facilitated exfoliation of MMT. The 1 wt % MMT/PCL‐PUC nanocomposites showed enhanced tensile properties relative to the pure PCL‐PU. As the MMT content increased in the MMT/PCL‐PUC nanocomposites, the degree of microphase separation of PCL‐PUC decreased because of the strong interactions between the PCL‐PUC chains and the exfoliated MMT layers. This resulted in an increase in the Young's modulus and a decrease in the elongation at break and maximum stress of the MMT/PCL‐PUC nanocomposites. Biodegradability of the MMT/PCL‐PUC nanocomposites was dramatically increased with increasing content of MMT, likely because of the less phase‐separated morphology of MMT/PCL‐PUC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
In this study, Ca2+‐montmorillonite (Ca2+‐MMT) and organo‐montmorillonite (OMMT) were modified by three compatibilizers with different degrees of polarity [poly(ethylene glycol) (PEG), alkyl‐PEG, and polypropylene (PP)‐g‐PEG]. PP/MMT nanocomposites were prepared by melt blending and characterized using X‐ray diffraction and transmission electron microscopy. The results showed the degree of dispersion of OMMT in the PP/PP‐g‐PEG/OMMT (PMOM) nanocomposite was considerably higher than those in the PP/PEG/OMMT and PP/alkyl‐PEG/OMMT nanocomposites, which indicated that the dispersion was relative to the compatibility between modified OMMT and PP matrix. Linear viscoelasticity of PP/MMT nanocomposites in melt states was investigated by small amplitude dynamic rheology measurements. With the addition of the modified MMT, the shear viscosities and storage modulus of all the PP/MMT nanocomposites decreased. It can be attributed to the plasticization effect of PEG segments in the three modifiers. This rheological behavior was different from most surfactant modified MMT nanocomposites which typically showed an increase in dynamic modulus and viscosity relative to the polymer matrix. The unusual rheological observations were explained in terms of the compatibility between the polymer matrix and MMT. In addition, the mechanical properties of PP/MMT nanocomposites were improved. A simultaneous increase in the tensile strength and toughness was observed in PP/PMOM nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Compatibilizer (styrene–maleic anhydride copolymer, SMA) and organo-montmorillonite (OMMT) were introduced into immiscible polyamide-6 (PA6)/ poly(phenylene oxide) (PPO) blend to obtain quaternary nanocomposites simply by melt extrusion. OMMT tactoids formed in PA6/PPO/OMMT ternary blend would become smaller or disappear with the addition of SMA. Besides, viscosity of SMA compatibilized PA6/PPO blend decreased a lot with the addition of OMMT. Based on these results, a mechanism for joint effect of SMA and OMMT in compatibilizing PA6 and PPO was proposed. We further studied water absorption and tensile properties of the nanocomposites, which were in consistent with the proposed mechanism.  相似文献   

15.
Long Jiang  Jinwen Zhang  Michael P. Wolcott   《Polymer》2007,48(26):7632-7644
Semicrystalline polylactide (PLA) exhibits high tensile strength and modulus but very low strain-at-break and toughness. In this study, PLA nanocomposites with nano-sized precipitated calcium carbonate (NPCC) and organically modified montmorillonite (MMT) clay were prepared by melt extrusion. Morphologies, tensile mechanical properties, dynamic mechanical and rheological properties, polymer–nanoparticle interactions, and toughening mechanisms of the PLA/NPCC and PLA/MMT nanocomposites were compared. MMT and NPCC showed significantly different effects on the strength, modulus and elongation of the PLA nanocomposites. Different toughening mechanisms were first elucidated for the two types of nanocomposites based on the evidence from both macroscopic and microscopic observations. Under uniaxial tension, large quantities of microvoids were created in both PLA nanocomposites. The microvoids in PLA/NPCC caused massive crazing, while in PLA/MMT they resulted in shear yielding, particularly in the nanocomposite with 2.5 wt% MMT. The MMT stacks and platelets were found to be located between the microvoids in the extended specimens and prevented them from collapsing and coalescing.  相似文献   

16.
Polylactide (PLA) nanocomposites were prepared by an extrusion technique using a twin‐screw extruder. Nanofil2 (N) and montmorillonite (MMT) K10 (S) were used as nanoclays. To improve the nanoclay dispersion in the PLA matrix, a compatibilizer was introduced [poly(ε‐caprolactone) (K)]. The structure and morphology of obtained materials were determined using X‐ray diffraction technique and transmission electron microscopy. Thermal properties of nanocomposites were reviewed based on differential scanning calorimetry and differential thermogravimetry. Mechanical properties such as tensile stress and tensile strength were also studied. The introduction of layered silicates without a compatibilizer into PLA matrix did not improve the mechanical properties of the obtained nanocomposites. This research indicated that the compatibilizing agent can be used to improve the dispersion of Nanofil2 nanofiller, which resulted in the improvement of mechanical properties and at the same time did not affect the dispersion of the unmodified MMT. POLYM. COMPOS., 35:1330–1337, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
宋国君  李培耀  谷正  孙翠华  王立 《化工进展》2012,31(8):1775-1780,1785
选择不同种类的有机蒙脱土(OMMT)和不同聚合物种类,采用不同加工条件和工艺,利用机械混炼法或挤出法制备出了不同亚微观形态的聚合物/有机蒙脱土纳米复合材料。首先通过研究具有不同的改性层间距的OMMT,发现改性后层间距的增大有利于聚合物分子的插层及蒙脱土片层的剥离,有利于制备剥离型纳米复合材料,并用示意图简要说明了形成过程;而同一种OMMT在具有不同分子结构的聚合物中,利用实例(高密度、低密度、线型低密度聚乙烯)以及简易示意图说明了聚合物分子链结构对于制备的纳米复合材料的亚微观形态的影响机理。在加工工艺条件中,加工过程中的剪切力大小是主要影响因素,通过以挤出法和机械混炼法制备的PP/OMMT与EPDM/OMMT纳米复合材料的TEM结果对比分析,说明剪切力的增大有利于蒙脱土片层的分离,更倾向于制备出剥离型纳米复合材料。  相似文献   

18.
Polylactic acid (PLA)/organo‐montmorillonite (OMMT) nanocomposites toughened with thermoplastic polyurethane (TPU) were prepared by melt‐compounding on a novel vane extruder (VE), which generates global dynamic elongational flow. In this work, the mechanical properties of the PLA/TPU/OMMT nanocomposites were evaluated by tensile, flexural, and tensile tests. The wide‐angle X‐ray diffraction and transmission electron microscopy results show that PLA/TPU/OMMT nanocomposites had clear intercalation and/or exfoliation structures. Moreover, the particles morphology of nanocomposites with the addition of TPU was investigated using high‐resolution scanning electronic microscopy. The results indicate that the spherical TPU particles dispersed in the PLA matrix, and the uniformity decreased with increasing TPU content (≤30%). Interestingly, there existed abundant filaments among amount of TPU droplets in composites with 30 and 40 wt% TPU. Furthermore, the thermal properties of the nanocomposites were examined with differential scanning calorimeter and dynamic mechanical analysis. The elongation at break and impact strength of the PLA/OMMT nanocomposites were increased significantly after addition of TPU. Specially, Elongation at break increased by 30 times, and notched impact strength improved 15 times when TPU loading was 40 wt%, compared with the neat PLA. Overall, the modified PLA nanocomposites can have greater application as a biodegradable material with enhanced mechanical properties. POLYM. ENG. SCI., 54:2292–2300, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
剥离型酚醛树脂/蒙脱土纳米复合材料研究   总被引:8,自引:0,他引:8  
用十六烷基三甲基溴化铵(CTAB)对蒙脱土进行了有机化处理,使蒙脱土由亲水性变成亲油性。采用XRD、FTIR及TEM研究了有机蒙脱土及其在酚醛树脂中的剥离行为,制备了酚醛树脂/蒙脱土纳米复合材料并测试了其层间剪切性能和烧蚀性能。实验结果表明,经CTAB处理的蒙脱土与酚醛树脂具有良好的相容性,且CTAB的含量较多时所制得的有机蒙脱土的结构较好,根据Bragg方程计算,CTAB用量超过蒙脱土量50%时,蒙脱土的片层间距由原来的1.48 nm增加到2.33 nm;有机蒙脱土用量小于5%时生成完全剥离型酚醛树脂/蒙脱土纳米复合材料;与碳布增强酚醛树脂复合材料相比,碳布增强酚醛树脂/蒙脱土纳米复合材料的力学性能和烧蚀性能均有一定的提高和改善,层间剪切强度随蒙脱土含量的增多而增大,蒙脱土用量为15%时,层间剪切强度提高了27.1%,线烧蚀率在用量为3%时降低了48.5%,质量烧蚀率变化不明显。  相似文献   

20.
以新疆地产蒙脱土和聚乳酸为原料,通过熔融插层的方法制备了聚乳酸(PLA)/有机蒙脱土(OMMT)纳米复合材料。分别采用X射线衍射仪、扫描电子显微镜、透射电子显微镜、热重分析仪等对复合材料的微观结构、形貌及热稳定性进行了表征和分析。研究表明,PLA大分子链已经插入OMMT片层间,层间距明显增大,形成PLA/OMMT纳米复合材料,体系的相容性良好。PLA/OMMT纳米复合材料的热失重曲线移向高温端,其热分解温度提高。PLA/OMMT纳米复合材料的熔点、维卡软化点、冲击强度、拉伸强度、热稳定性均比PLA基体有明显的提高。PLA/OMMT纳米复合材料的降解性初步研究表明其是一种良好的生物可降解环保塑料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号