首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary purpose of the study was to investigate the anisotropic behavior of different noncrimp stitched fabric reinforced polyester composites. The effects of geometric variables on composite structural integrity and strength are illustrated. Hence, tensile, three‐point bending flexural and short beam shear tests were conducted up to failure on specimens strengthened with different layouts of fibrous plies in noncrimp stitched fabric. The remark, based on the observations while tensile testing, is that the stress–strain curves of polyester based composites were linear in the direction of fibers. However, in the matrix dominated orientations nonlinear relation between the stress and the strain was observed. Another aim of the present work was to investigate the interaction between glass fiber and polyester matrix. The experiments, in conjunction with scanning electron photomicrographs of fractured surfaces of composites, were interpreted in an attempt to explain the interaction between glass fiber and polyester and were interpreted in an attempt to explain the instability of polyester resin–glass fiber interfaces. It was concluded that the polymer was either deposited between adjacent fibers or as widely separated islands on the fiber surface. Infrared spectra of the cured polyester and its glass fiber composite were obtained by Fourier transform infrared spectroscopy. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

2.
The primary purpose of the study is to investigate the anisotropic behavior of different noncrimp stitched fabric (NCF) reinforced polyester composites. Carbon fiber composite laminates were manufactured by vacuum infusion of polyester resin into two commonly used advanced noncrimp stitched carbon fabric types, unidirectional and biaxial carbon fabric. The effects of geometric variables on composite structural integrity and strength were illustrated. Hence, tensile and three‐point bending flexural tests were conducted up to failure on specimens strengthened with different layouts of fibrous plies in NCF. In this article an important practical problem in fibrous composites, interlaminar shear strength as measured in short beam shear tests, is discussed. The fabric composites were tested in three directions: at 0°, 45°, and 90°. Extensive photomicrographs of multilayered composites resulting from a variety of uniaxial loading conditions were presented. It was observed that broken fibers recede within the matrix in composites with weak interfacial bond. Another aim of the present work was to investigate the interaction between carbon fiber and polyester matrix. The experiments, in conjunction with scanning electron photomicrographs of fractured surfaces of composites, were interpreted in an attempt to explain the instability of polyester‐resin–carbon‐fiber interfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4554–4564, 2006  相似文献   

3.
The impact properties of epoxy resin composites reinforced with three types of fabrics which are welf-knitted structural fabrics (WKSF), three-dimensional fabrics (3D-3A & 3D-5A) and plain-weave structural fabrics (2D-2A) have been investigated. The results of experiments show that WKSF composite has total impact energy about 1.5 and 3.5 times those of 3D and 2D fabrics composite respectively. The ductility index of WKSF is about 2.2 times of those of 3D and 2D. WKSF composites are very ductile materials and can absorb much more impact energy than 3D and 2D composites. The pushed-out volume of WKSF composites after the impact test was calculated from the photographs and the results show that the volume of the pushed-out zone is proportional to impact energy.  相似文献   

4.
短碳纤维增强碳化硅基复合材料的制备   总被引:5,自引:0,他引:5  
短纤维的分散均匀性一直是短纤维复合材料应用受限的主要原因.采用固相球磨分散和熔融渗硅工艺,可得到均匀分散的短碳纤维增强碳化硅基复合材料.并利用金相显微镜见察复合材料微观形貌,测试复合材料的抗弯强度和断后韧性.  相似文献   

5.
A high-toughness epoxy has been prepared using carboxyl-terminated butadiene acrylonitrile (CTBN) as a toughening agent to modify the AG-80 epoxy resin. High-performance carbon fiber/epoxy (CF/EP) composites are fabricated using the CTBN-toughened epoxy resin as the matrix and two types of CF, namely, T800SC and T800HB, as reinforcement. The mechanical properties of the matrix, surface properties of the CFs, tensile properties, and fracture morphologies of the composites are systematically investigated to elucidate the key factors influencing interfacial bonding in high-performance CF/EP composites. The results reveal that the most significant improvement in toughness is achieved when the CTBN content is 6.90 wt.% in the epoxy resin. Owing to the high content of polar functional groups and excellent surface wettability of T800SC, the T800SC/EP composite exhibits superior mechanical properties compared with the T800HB/EP composite.  相似文献   

6.
Siliconized epoxy‐matrix systems have been developed by an interpenetrating mechanism using epoxy resins GY 250 and LY 556 (Ciba‐Geigy) and hydroxyl terminated polydimethylsiloxane with γ‐aminopropyltriethoxysilane as crosslinker in the presence of dibutyltindilaurate catalyst. Aliphatic amine (HY 951, Ciba‐Geigy), aromatic amine (HT 972, Ciba‐Geigy) and polyamidoamine (HY 840, Ciba‐Geigy) are used as curing agents for epoxy resins. The tentative level of 10% siloxane introduction into epoxy resin has been ascertained from experimental studies to obtain reasonable improvements in the impact behavior without compromising other mechanical properties. The impact behavior of E‐glass reinforced composites made from the siliconized epoxy resin is enhanced to 2–4 times over that measured on the composites made from a pure epoxy resin. Composites cured with aromatic amine impart better mechanical properties than those cured with aliphatic amine and polyamidoamine.  相似文献   

7.
将短切碳纤维(CF)、白炭黑和甲基乙烯基硅橡胶(VMQ)共混后,与碳纤维布(CFC)复合制备VMQ复合材料.考察了CFC层数对复合材料的拉伸性能、邵尔A硬度、耐磨性能及动态力学性能的影响.结果表明,随着CFC层数的增加,复合材料的扯断伸长率基本不变,拉伸强度逐渐升高.与仅添加10份(质量,下同)CF的复合材料相比,加入...  相似文献   

8.
This study is focused on the investigation of the effect of thermal shock cycling on the mechanical properties of cellulose based reinforced polymer composites. Polymer composites reinforced with olive pits powder at different filler‐volume fractions were manufactured. An increase in the bending modulus on the order of 48% was achieved. On the other hand, results showed that the bending strength remained almost unaffected from the amount of filler introduced. Next, the effect of thermal shock cycling on the mechanical behaviour of the thus manufactured composites was investigated. Theoretical predictions for both the properties variation with number of thermal shock cycles applied as well as with filler‐volume fraction were derived using the residual properties model (RPM) and the modulus predictive model (MPM), respectively. Predicted values were compared with respective experimental results. In all cases, a fair agreement between experimental findings and theoretical predictions was found. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
In this study, the effect of diamine molecular structure, attached to the multiwalled carbon nanotubes (MWCNTs), on the interfacial interactions of the MWCNTs and the epoxy matrix was studied. Pristine MWCNTs were successfully functionalized with multiple aliphatic and aromatic diamines. It has been found that, compared to aliphatic molecules, aromatic diamines can yield higher functionalization degree, due to higher activity and longer half‐life of aromatic intermediates. However, at the same functionalization degree, the aliphatic ligands were more successful in reacting with epoxy chains and forming covalent bonds between the MWCNTs and the matrix. Considerable improvements were achieved in the mechanical properties of functionalized MWCNT‐reinforced epoxy composites in comparison with the pristine MWCNT‐reinforced composites. Fractography observations revealed distinct differences in the failure modes of reinforced composites after functionalization of the MWCNTs with diamines. POLYM. ENG. SCI., 59:1905–1910, 2019. © 2019 Society of Plastics Engineers  相似文献   

10.
Carbon nanotubes (CNTs) were used to improve the tensile properties of an epoxy resin and its continuous carbon fiber (CF) reinforced composites. Micrography picture showed that CNTs has been well incorporated into the composites, and made the fracture cross section more rougher through sharing the stress. For the CNT/epoxy composite, the tensile strength and modulus both increased upon the CNT addition, and at a CNT volume concentration of 2.0%, the maximum enhancements in the tensile strength and modulus were achieved as 26.7% and 21.5%, respectively. For the CNT‐CF/epoxy composite, the maximum enhancement in tensile strength was achieved as 11.6% at a CNT volume concentration of 1.0% and then decreased with the further increase of the CNT addition, but the tensile modulus increased monotonically upon the CNT addition. POLYM. COMPOS., 36:1664–1668, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
A theoretical model for a short fiber reinforced composite is proposed. The composite is assumed to consist of an aggregate of sub-units, each sub-unit possessing the elastic properties of a reinforced composite in which the fibers are continuous and fully aligned. The elastic constants of a partially oriented composite are then calculated by the Voigt and Reuss averaging procedures, giving upper and lower bounds respectively for the composite modulus. Comparison is made with experimental data for such composites. The measured modulus of glass and carbon fiber composites is found to be given by the Reuss or lower bound, to a good approximation compared with the difference between the bounds, for fiber orientations ranging from almost isotropic to highly aligned.  相似文献   

12.
Three types of carbon nanoscale reinforcements (CNRs) including the shortened electrospun carbon nanofibers (ECNFs, with diameters and lengths of ∼200 nm and ∼15 µm, respectively), carbon nanofibers (CNFs), and graphite nanofibers (GNFs) were electrophoretically deposited on carbon fiber (CF) fabrics for the fabrication of hybrid multi‐scale epoxy composites. The results indicated that the electrophoretic deposition (EPD) of CNRs onto CF fabrics led to substantial improvements on mechanical properties of hybrid multi‐scale epoxy composites; in particular, the hybrid multi‐scale epoxy composite containing surface‐functionalized ECNFs (with amino groups) exhibited the highest mechanical properties. The study also indicated that some agglomerates of CNRs (particularly GNFs) could form during the EPD process, which would decrease mechanical properties of the resulting composites. Additionally, the reinforcement mechanisms were investigated, and the results suggested that continuous (or long) ECNFs would outperform short ECNFs on the reinforcement of resin‐rich interlaminar regions in the composites. POLYM. COMPOS., 35:1229–1237, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
Fiber‐reinforced polymeric composites (FRPCs) have emerged as an important material for automotive, aerospace, and other engineering applications because of their light weight, design flexibility, ease of manufacturing, and improved mechanical performance. In this study, glass‐epoxy (G‐E) and silicon carbide filled glass‐epoxy (SiC‐G‐E) composite systems have been fabricated using hand lay‐up technique. The mechanical properties such as tensile strength, tensile modulus, elongation at break, flexural strength, and hardness have been investigated in accordance with ASTM standards. From the experimental investigations, it has been found that the tensile strength, flexural strength, and hardness of the glass reinforced epoxy composite increased with the inclusion of SiC filler. The results of the SiC (5 wt %)‐G‐E composite showed higher mechanical properties compared to G‐E system. The dielectric properties such as dielectric constant (permittivity), tan delta, dielectric loss, and AC conductivity of these composites have been evaluated. A drastic reduction in dielectric constant after incorporation of conducting SiC filler into epoxy composite has been observed. Scanning electron microscopy (SEM) photomicrographs of the fractured samples revealed various aspects of the fractured surfaces. The failure modes of the tensile fractured surfaces have also been reported. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
We have examined the micro indentation hardness of a series of carbon fiber reinforced epoxy and thermoplastic polyimide (TPI) composites. In the epoxy systems, the influence of Nylon particles was studied. The effect of crystallization of the thermoplastic polyimide upon the microhardness values of the resin was also investigated. The microstructure of the TPI-composites was characterized by X-ray diffraction. The results show that the addition of carbon fibers to the neat resins greatly increases the microhardness and thus the yield stress of the composite. The value of the microhardness technique is highlighted in emphasizing the heterogeneity of the CFRC.  相似文献   

15.
《Polymer Composites》2017,38(10):2212-2220
Sandwich composites based on coir fiber nonwoven mats as core material were manufactured by Vacuum Assisted Resin Transfer Molding technique. Mechanical and physical properties of produced coir/polyester and coir‐glass/polyester composites were assessed. Samples were evaluated according to their reinforcement contents, resin contents, areal density, and thickness. Tests on physical properties revealed that coir‐glass/polyester sandwich structure has the lowest values of thickness swelling, water absorption and moisture contents compared with coir/polyester composite. Mechanical tests such as tensile strength, open‐hole tensile strength, and flexural strength were also performed on all samples. Coir‐glass/polyester sandwich structure showed significant increase in tensile strength of 70 MPa compared with 8 MPa of coir/polyester composite. Introducing two skins of fiber glass woven roving to coir/polyester increased its flexural strength from 31.8 to 131.8 MPa for coir‐glass/polyester. POLYM. COMPOS., 38:2212–2220, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
Short carbon fiber‐reinforced composites (SCFRCs) have attracted increasing attention owing to their comprehensive performance and easy processing route. However, the imperfect interfacial adhesion and serious stress concentration at the fiber/matrix interface have hampered their engineering application. In this article, we first report the preparation of SCFRC modified by a low‐viscosity liquid hyperbranched epoxy resin (Hyper E102). We then investigated the effect of Hyper E102 content on thermal and mechanical properties. The results show that the overall performance of the SCFRC first increases and then decreases with the increasing content of Hyper E102. With the incorporation of 12 phr Hyper E102, the tensile strength, fracture toughness, notched, and unnotched impact strength of SCFRC were increased by 16.7, 74.9, 95.3, and 194.5%, respectively. The toughening and reinforcing mechanisms were attributed to the following three aspects. First, the Hyper E102 improves the impregnation property of epoxy matrix against fibers, which helps form a better interfacial adhesion. Second, the incorporation of Hyper E102 reduces the internal stress level and stress concentration of the SCFRC. Finally, the critical crack length inside the SCFRC can be remarkably increased with the incorporation of Hyper E102, which can enhance the damage tolerance of a composite. POLYM. COMPOS., 37:2727–2733, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens—(i) carbon fibre epoxy matrix composite (CF/Epoxy), (ii) carbon fibre epoxy matrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxy matrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs—were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 13% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.  相似文献   

18.
This work presents a novel experimental study on the use of auxetic fabrics as the main reinforcement in geopolymer composites, aiming at higher energy dissipation in impact demanding applications. For this, a potassium-based geopolymer was reinforced with an auxetic fabric consisting of basalt fiber fillings positioned between helical auxetic yarns (HAY) made of a thermoplastic polyester core, and a stiffer liquid-crystal polymer wrap, which dispersed the load demands into several single elements having different capabilities. The composites were investigated under quasi-static flexural and tensile loadings, in both longitudinal and transverse directions. The latter showed increased mechanical strengths, up to 26 MPa in tension, and 12.8 MPa in flexural strength. Each fiber portion was tested in tension separately, reaching flexible (core) and stiffer (wrap and basalt) responses, whereas HAYs displayed combined performances due to a suitable auxeticity effect, that is, a negative Poisson's ratio. The pullout investigation justified the cracking and delamination of the composites, due to its cyclic lateral area modification, which created a load demand much higher than what the brittle geopolymer can sustain in this type of solicitation. Thermogravimetric analyses helped to predict the use of such configurations under thermal exposure, pointing out that the geopolymer material could be a suitable thermal barrier to prevent sudden degradation of the fabric under these conditions.  相似文献   

19.
An experimental investigation has been carried out to study the influence of thermoplastic addition on the mechanical properties of woven carbon fiber/epoxy matrix composites. As toughening agent bisphenol‐A polysulfone, PSu, has been added to the epoxy matrix. Flexural tests haved been performed to characterize the mechanical behavior of unmodified and PSu‐modified bulk tetra‐ and bifunctional epoxy matrices and also for the corresponding woven carbon fiber, CF, composite materials. Three‐point notched flexural tests been used to investigate the influence of polysulfone addition in the mode‐I fracture properties of the bulk epoxy matrices, relating them to their microstructural features investigated by atomic force microscopy (AFM). The double‐cantilever bea (DCB) and the end‐notched flexural (ENF) tests have been applied to characterize the interlaminar fracture toughness of the corresponding composites. For composites, the flexural properties were simmilar independent of the funcetionality of the epoxy matrix and of the thermoplastic content. Nevertheless, PSu addition to the epoxy matrix celarly enhanced the ode‐I and II interlaminar fracture toughness of the corresponding composites, the immprovement being higher for the composites manufactured with the bifunctional epoxy matrix at every thermoplastic content because of the lower crosslink density of the epoxy matrix.  相似文献   

20.
Carbon fiber reinforced SiC matrix composites (Cf/SiC) were fabricated through chemical vapor infiltration. Effects of SiC content on the mechanical and electromagnetic properties of the as-prepared materials were studied systematically. The high volume fraction of SiC matrix is beneficial to the transfer of load to carbon fiber. With the increase of SiC content from 21.5 to 42.2 vol.%, the total porosity decreases from 38.5 to 17.8 vol.%, the flexural strength and fracture toughness of Cf/SiC increase from 38 ± 4 to 375 ± 10 MPa and from 6.2 ± 0.7 to 21 ± 0.3 MPa m1/2. The electromagnetic interference shielding effectiveness of as-prepared Cf/SiC decreases from 43 ± 1.4 to 31 ± 1.1 dB over the frequency range of 8.2–12.4 GHz with the increase of SiC content. The decease of electromagnetic interference shielding effectiveness is mainly attributed to the decline of absorption loss. With the increase of SiC content, the electrical conductivity of Cf/SiC diminishes, leading to the conspicuous drop of the conductive loss, which plays the key role in lowering the absorption loss of electromagnetic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号