首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to investigate whether starch and poly(vinyl alcohol) could be compatible in a powder for coating. Free films of a mixture of the polymers were produced by casting and investigated with respect to their mechanical properties and moisture uptake. The moisture uptake was substantially higher when glycerol was added and the glycerol‐containing films had a lower failure stress under tension than the corresponding glycerol‐free films. At glycerol levels of 20 wt% or above, the glycerol content resulted in a high strain to failure. Dry powders with and without glycerol were made from the starch/poly(vinyl alcohol) solutions by spray drying. The powders were investigated by differential scanning calorimetry (DSC), to determine the degree of physical ageing or crystallinity. All powders showed a broad peak indicative of the melting of crystals at 100–150°C in the first scan, but this peak disappeared almost completely after rapid cooling. The glycerol‐free powder showed a small endothermic peak at about 45°C, indicating physical ageing of the powders during storage. Suspensions of the powders in a liquid plasticiser (glycerol or poly(ethylene glycol)) showed a sharp increase in storage modulus at a certain temperature, indicating the onset of swelling. The observed swelling meant that some of the powders are good candidates for plastisol coatings.  相似文献   

2.
The effect of plasticizers, glycerol, sorbitol and poly(ethylene glycol) 400 (PEG 400), on mechanical and barrier properties of rice starch film has been investigated. Sorbitol‐ and glycerol‐plasticized starch films appeared homogeneous, clear, smooth, and contained less insoluble particles compared to unplasticized rice starch films. PEG 400 did not form plasticized films of suitable characteristics. The softness and stickiness of films improved with increasing concentrations of glycerol and sorbitol. In general, films plasticized with glycerol and sorbitol displayed a better solubility in water than unplasticized films, i.e. 35% (w/w) glycerol and 45% w/w (sorbitol) (optimum solubility). The tensile strength of films decreased especially in the high concentration regime of plasticizers, between 20–45% (w/w) of plasticizer/rice starch film. Through the entire concentration regime, the tensile strength of glycerol‐plasticized films was significantly lower than that of sorbitol‐plasticized films, but their elongation was larger. The water vapor transmission rate (WVTR) through plasticized films and the oxygen transmission rate (OTR) increased with glycerol and sorbitol concentrations, however, glycerol was revealed to be significantly more effective in reducing the tensile strength as well as increasing the WVTR and the OTR compared to sorbitol. With the higher tensile strength and the smaller OTR and WVTR, the 30% sorbitol‐plasticized film reveals an improved coating performance in terms of a reduction of coating failures.  相似文献   

3.
Edible starch films were produced from pea starch and various plasticizers (mannose, glucose, fructose, and glycerol and sorbitol) at the ratio of 4.34, 6.50, 8.69, and 10.87 mmol plasticizer per gram of starch. After film specimens were conditioned at 50% relative humidity, mechanical properties (tensile strength, elongation, and modulus of elasticity), water vapor permeability (WVP), moisture content, and thermomechanical properties (G’ and tan8) were determined as a function of plasticizer concentration. At all concentration levels, monosaccharides (mannose, glucose, and fructose) made the starch films stronger (higher tensile strength) and more stretchable than polyols (glycerol and sorbitol), while WVP of monosaccharide‐plasticized starch films were lower than those of polyol‐plasticized starch films, especially at higher plasticizer concentration levels. Except for 4.34 mmol/g of mannose‐plasticized film, all the other films showed similar modulus of elasticity at the same plasticizer concentration. Polyol‐plasticized films had lower T than the monosaccharide‐plasticized films. Glucose‐ and sorbitol‐plasticized films needed more activation energy to go through glass transition than others. After all, research results showed that not only the polyols but also the monosaccharides were effective in plasticizing starch films. It is concluded that molecular size, configuration, total number of functional hydroxyl group of the plasticizer as well as its compatibility of the plasticizers with the polymer could affect the interactions between the plasticizers and starch molecules, and consequently the effectiveness of plasticization.  相似文献   

4.
Films made of potato starch were developed and glycerol as plasticizer and Tween 20, Span 80, and soy lecithin as surfactants were included in the formulation. Films were characterized with respect to water vapor permeability (WVP) and mechanical properties. The wettability of the film solutions was quantified by measuring their surface tension.The incorporation of plasticizers resulted in more flexible and manageable films and higher WVP. At low concentration, Tween 20 was the surfactant that reduced surface tension the most, while at high concentration it was lecithin. In the absence of glycerol, surfactants had a significant effect on mechanical properties, but they did not modify significantly WVP of the films. It was observed a synergistic behavior between the plasticizer and the surfactants. Films with glycerol and high level of any of the surfactants behaved as films with larger amount of plasticizer (with lower tensile strength, higher elongation, and higher WVP). Tween 20 was the surfactant that showed the most intense synergistic effect with glycerol.  相似文献   

5.
Plasticized starch/clay composite films were prepared by casting aqueous solutions containing oxidized corn starch, different concentrations of glycerol as a plasticizer and 5% clay (sodium montmorillonite, Na+‐MMT) on the basis of dry starch. The water‐binding properties of the composite films were evaluated by water vapor sorption isotherms at room temperature and various relative humidities (RHs). Mechanical properties and abrasion resistance were also analyzed for the films with varying glycerol contents at 68% RH and room temperature. Changes in water sorption isotherms suggested that glycerol interacted with both water and starch in a complicated way. A saturation phenomenon of glycerol, depending on RH, was observed based on the isotherms. Above this saturation content, phase separation of the system occurred with the appearance of free glycerol. According to mechanical performance and abrasion resistance, as well as water vapor sorption of the starch blend films, the three‐stage transition was presented to be related to the state of glycerol in the blend system, i.e. adsorption of glycerol onto H‐bonding sites of starch, supersaturation of glycerol as plasticizer and further supersaturation of glycerol. Only above the supersaturation content can glycerol play a plasticizer role in starch‐based composites.  相似文献   

6.
Edible films were developed using different starch sources (corn starch and amylomaize). Starch suspensions were cold gelatinized with NaOH; either glycerol or sorbitol were used as plasticizer. Films were characterized by Differential Scanning Calorimetry (DSC), X‐ray diffraction, Scanning Electron Microscopy (SEM) and gas (CO2 and O2) permeabilities. SEM observations showed that plasticizer addition was necessary for film integrity. The evaluation of film formation by DSC indicated that cold gelatinization was the main factor of thermal transitions. Film crystallinity was analyzed by DSC and X‐ray diffraction during storage. For all tested formulations, film crystallinity increased while gas permeability decreased during storage. Films containing glycerol or sorbitol showed a lower crystalline/amorphous ratio by X‐ray diffraction and DSC than unplasticized films. Amylomaize films with higher crystalline/amorphous ratio gave lower gas permeabilities than the corresponding corn starch films; films containing sorbitol showed lower permeability values than those containing glycerol.  相似文献   

7.
Cassava‐starch based polymer films containing glycerol as a plasticizer (1.0‐2.5‐5.0%, w/w) and different lipids as additives (paraffin, stearyl alcohol, and beeswax – 0.25‐0.5‐1.0%, w/w) were produced. Control films were produced by heating a mixture of glycerol, starch, and water, while treated films were produced by the addition of lipids/ ethanol solutions. The solutions were kept at around 70ºC during amalgamation, and once congealed, were placed in a vacuum oven for 1 h at 90ºC. The solutions were then spun on 7‐inch diameter non‐stick disks, allowed to dry, and conditioned at 23ºC and 50% RH before testing. Cassava starch‐glycerol‐beeswax films were successfully produced with a stable film structure at glycerol concentration equal or below 5% (w/w). Addition of glycerol and beeswax did not visually change the color of the films. Increasing glycerol content improved elongation while decreasing tensile strength. Increasing the glycerol concentration from 1.0 to 5.0% increased the water vapor permeability by 150% and addition of beeswax further increased these values by 250%.  相似文献   

8.
Composites of polyvinyl alcohol, native banana starch, oxidized banana starch using glycerol like plasticizer, were studied by mechanical tests (MT), scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) and solubility in water. The oxidized banana starch showed higher level of carboxyl groups than of carbonyl groups. Composites of native banana starch/polyvinyl alcohol and oxidized banana starch/polyvinyl alcohol showed irregularities, indicating incomplete dispersion of the polymers. However, the film elaborated with the blend oxidized banana starch/polyvinyl alcohol showed the highest mechanical properties and the melting temperature of the first transition, as well as the lowest water vapor permeability, indicating higher interaction between both polymers. The composite oxidized banana starch/polyvinyl alcohol showed higher water solubility than the one of its counterpart with native banana starch at 25°C, and similar values were obtained for both films at 60°C. The oxidation of banana starch in order to elaborate a film blended with polyvinyl alcohol improved some mechanical and barrier properties, and this composite could be used for specific applications in the packing of food.  相似文献   

9.
研究不同膜液配比、不同增塑剂及用量、不同油脂及用量对马铃薯淀粉/海藻酸钠复合交联可食膜阻湿性能的影响。马铃薯淀粉含量高的膜样比海藻酸钠含量高的膜样具有更低的水蒸气透过系数,但水溶性增加;增塑剂(甘油、山梨醇、甘油山梨醇混合物)用量提高,复合交联可食膜的水蒸气透过系数和水溶性均增加,以质量比为1∶1的甘油与山梨醇混合物为增塑剂的膜样具有较低的水蒸气透过系数和水溶性;油脂可以提高复合交联可食膜的疏水性,降低复合交联可食膜的水溶性,添加橄榄油的复合交联可食膜比添加硬脂酸具有更低的水蒸气透过系数。   相似文献   

10.
The aim of this study was to evaluate the effect of the addition of xanthan gum and glycerol to the starch of green pea with high content of AM (cv. Utrillo) in the preparation of films and their physical characteristics. Filmogenic solution (FS) with different levels of pea starch (3, 4, and 5%), xanthan gum (0, 0.05, and 0.1%), and glycerol (glycerol–starch ratio of 1:5 w/w) were studied. The FS was obtained by boiling (5 min), followed by autoclaving for 1 h at 120°C. The films were prepared by casting. Films prepared only with pea starch were mechanically resistant when compared to other films, prepared with corn, cassava, rice, and even other pea cultivars (yellow, commercial). The tensile strength of these films is comparable to synthetic films prepared with high‐density polyethylene and linear low‐density polyethylene. However, they are films of low elasticity when compared to other films, such as rice starch films, and especially when compared to polyethylene films. The increased concentration of starch in the solution increased the puncture force. The increased concentration of glycerol slightly decreased the film crystallinity and interfered in the mechanical properties of the films, causing reduction of the maximum values of tensile strength, strain at break, and puncture force. The plasticizer also caused an increase of elongation at break. Xanthan gum was important to formation of films; however, it did not affect their mechanical properties.  相似文献   

11.
淀粉成膜性和疏水性对表面施胶包装纸的影响   总被引:1,自引:0,他引:1  
本文研究了添加甘油对疏水改性木薯淀粉膜力学性能及阻隔性能的影响,甘油的添加降低了疏水改性淀粉膜的玻璃转化温度、储能模量及水蒸气透过量.当温度低于临界温度上限时,疏水改性淀粉将会出现固态及液态两种形式.热的淀粉溶液中加入适量的甘油可以抑制淀粉微粒的沉淀.与羟丙基淀粉相比,疏水改性淀粉中添加不同量的甘油并涂覆干基材表面,对基材的阻隔性、水蒸气透过量、接触角及可勃吸水值均有一定影响.从表面施胶基材的可勃吸水值和水蒸气透过量的变化上可以看出,淀粉的成膜性对基材的性能有非常重要的影响.良好的成膜性可以改善基材的阻气、阻湿性,而对基材表面润湿性的影响不大.随着甘油含量的逐渐增加,基材的水蒸气透过量不断减少;但仍无法得到较好的阻湿性能.本文中所用的疏水改性淀粉具有较好的氧气阻隔性能和接触角,因此,表面施胶后的基材具有较好的疏水特性.同时在实验条件下研究了淀粉沉淀对基材性能的影响,利用淀粉沉淀对基材表面进行施胶后即使淀粉成膜性较差,也可以得到较低的水蒸气透过量和较高的接触角.通过增加疏水改性淀粉中甘油的含量,表面施胶基材的可勃吸水值可以得到显著改善.  相似文献   

12.
Cornstarch, at 20% moisture content (dry basis, d.b.), was mixed with glycerol at 3:1 ratio to form the base material for extruded starch films. Stearic acid, sucrose and urea, at varying concentrations, were tested as secondary plasticizers for the starch‐glycerol mixture. The ingredients were extruded at 110 and 120°C barrel temperatures to determine the effects of extrusion temperature, plasticizer type and their concentrations on the film‐forming characteristics of starch, as well as their effects on selected physical and functional properties of the films. The physical and mechanical properties of the films were studied by scanning electron microscopy (SEM) and tensile testing, while the glass transition and gelatinization properties were analyzed using differential scanning calorimetry (DSC). The interactions between the functional groups of starch and plasticizers were investigated using Fourier‐transform infrared (FTIR) spectroscopy. The water vapor permeability (WVP) properties of starch films were determined using ASTM standard E96‐95. Scanning electron micrographs exhibited the presence of native and partially melted starch granules in the extruded films. The tensile stress, strain at break and Young's modulus of starch films ranged from 0.9 to 3.2 MPa, 26.9 to 56.2% and 4.5 to 67.7 MPa, respectively. DSC scans displayed two glass transitions in the temperature ranges of 0.1 to 1°C and 9.6 to 12°C. Multiple melting endotherms, including that of amylose‐lipid complexes, were observed in the thermoplastic extrudates. The gelatinization enthalpies of the starch in the extruded films varied from 0 to 1.7 J/g, and were dependent largely on the extrusion temperature and plasticizer content. The shift in the FTIR spectral bands, as well as the appearance of double‐peaks, suggested strong hydrogen bonding interactions between the starch and plasticizers. The WVP of starch films ranged from 10.9 to 15.7 g mm h‐1 m‐2 kPa‐1, depending on the extrusion temperature and the type of plasticizer used.  相似文献   

13.
Unripe banana flour and starch were used to formulate plasticized banana‐based films (flour film, PBF; starch film, PBS) with two types of plasticizers (glycerol, Gly; sorbitol, Sor) and a mixture of Gly‐Sor on film properties. PBS showed greater water barrier, elongation at break, toughness, and transparency, but lower efficiency in heat sealability than PBF. However, the easier and a higher yield in the preparation process of PBF lead to higher UV and visible light barrier than PBS which could be due to its protein content and the presence of phenolic compounds in PBF. Both banana films plasticized with Sor showed high glossiness, high efficiency in heat sealability, and mechanical and water barrier properties; however, the undesirable recrystallization of white crystals resulted in lower film flexibility. Thus, Gly‐Sor was preferred without change of water barrier but strengthened heat sealability. Therefore, banana‐based film might be considered as a green food packaging material.

Practical applications

Banana flour and starch from unripe bananas can be used as safe food ingredients for food products and as green biodegradable packaging materials. Banana flour film showed similar mechanical properties as banana starch film but involved easier processing and higher yield in the preparation of banana flour. Moreover, banana flour films had higher efficiency in heat sealability with the potential to protect the packed food from UV–visible light deterioration. Furthermore, an easier way to modify proper film properties is by the proper selection of the plasticizer. A mixture of plasticizers (glycerol and sorbitol) showed high potential to improve long‐term physical stability such as through UV–visible light prevention, and improved mechanical properties and heat sealability of plasticized banana‐based films. Briefly, plasticized banana flour film with a mixture of plasticizer will be potential, alternative biodegradable packaging material to reduce the use of nonbiodegradable synthetic plastic materials in food applications.  相似文献   

14.
本文以羟丙基交联木薯淀粉、聚羟基脂肪酸酯(PHA)为成膜基材,甘油(GLY)为主增塑剂,聚乙二醇200(PEG200)为辅增塑剂,有机改性蒙脱土(OMMT)为增强剂,采用挤压吹塑法制备淀粉/PHA复合膜。研究了PEG200与GLY质量比对淀粉/PHA复合膜性能的影响。采用X-射线衍射(XRD)、扫描电镜(SEM)和红外光谱(FT-IR)分别对膜的结构、微观形貌和分子间相互作用进行了表征,并测试了膜的水蒸气阻隔性、机械性能、透光率和色度。结果表明,主增塑剂甘油对淀粉/PHA共混体系具有较好的增塑效果,且随着辅增塑剂PEG200的加入,促进了淀粉、PHA分子与OMMT间纳米插层结构的形成,所成复合膜表面较为平整光滑,且透光率、白度值增加;当PEG200与GLY质量比为8/92时,所成复合膜阻水性较好,具有较高的断裂伸长率;当PEG200与GLY质量比为12/88时,所成复合膜具有较高的抗拉强度和透光率;辅增塑剂PEG200的添加能够增强各分子间的相互作用。在制备淀粉/PHA复合膜中,PEG200是一种较好的增塑剂和增容剂,PEG200与GLY的质量比不宜超过12/88。  相似文献   

15.
The phase behavior of temperature‐responsive hydrophobically modified starches and the interaction between oxidized potato amylose and hydrophobically modified potato amylopectin have been investigated by rheology, turbidity measurements and differential scanning calorimetry. When oxidized amylose was mixed with hydrophobically modified amylopectin, a viscosity peak was observed, indicative of a guest‐host interaction between the oxidized amylose and the hydrophobically modified amylopectin. A series of oxidized and hydrophobically modified potato starches were investigated in the presence of an anionic and cationic surfactant. A coil‐helix transition of the investigated starches was observed in the presence of surfactant, with the exception of a cationic surfactant combined with a hydrophobically modified zwitterionic starch of high positive net charge. The destabilizing mechanism (the phase separation) of the hydrophobically modified starches was studied as well as the difference in stabilizing capacity between the investigated cationic and anionic surfactants.  相似文献   

16.
高珊  于力  邓云  王丹凤  钟宇 《食品科学》2021,42(21):72-79
本实验分别以天然马铃薯淀粉(potato starch,PS)、改性马铃薯淀粉(包括羟丙基二淀粉磷酸酯(hydroxypropyl distarch phosphate,HDP)、醋酸淀粉(acetate starch,AS)和氧化淀粉(oxidized starch,OS))为基材,通过流延法制备可食用淀粉膜,考察冻融处理对膜物理性质、机械性能、阻隔性能、微观结构和热稳定性的影响。X射线衍射结果表明,马铃薯来源的淀粉颗粒具有典型的B型晶体结构,在成膜过程中淀粉结晶度降低,冻融处理后淀粉膜晶体峰强度明显减弱。扫描电子显微镜观察结果显示,冻融处理破坏了淀粉膜的微观结构,其中PS膜上出现明显裂纹,AS膜上出现蜂窝和层状结构,而HDP和OS淀粉膜具有更完整的形态。热重分析结果表明,随着温度的升高,淀粉膜的热重曲线出现4 个质量损失阶段,分别对应水分散失、甘油挥发、淀粉解聚及淀粉分解,而冻融处理对膜热稳定性影响较小。常温条件下,PS膜具有最佳的机械性能,其拉伸强度为2.29 MPa,断裂伸长率为68.82%。在3 个冻融循环后,淀粉膜的拉伸强度至少增加了2 倍,断裂伸长率普遍降低,而溶解度和水蒸气透过率仅有轻微变化。综合考虑不同淀粉膜微观结构、机械性能、水蒸气透过率及水溶性,HDP膜表现出更好的冻融稳定性,可应用于冷冻低水分食品的保藏。  相似文献   

17.
The use of starch for the production of biodegradable materials has been increasing. Wheat is an important source, however, durum wheat starch and its separated granular components had not been evaluated for this purpose. The aim of this study was to evaluate the physical and mechanical properties of durum wheat starch films when prepared with a distribution of different granular‐sized starches (A‐ and B‐type). Starch was isolated, and the A and B populations of granules were separated. Films were prepared by casting. Glycerol (G) was used as a plasticizer in concentrations of 25% and 40%, respectively. Starch films were evaluated using scanning electron microscopy (SEM), mechanical properties (tensile strength, TS, elongation at break, E, elastic modulus, EM), solubility, and X‐ray diffraction (XRD). Durum wheat starch films were transparent, flexible, and, according to SEM, highly homogeneous. Films prepared with 25% G showed brittle material behavior (TS = 42–50 MPa, E = 1.4–2.7%, and EM = 31–34 MPa), whereas those prepared with 40% G had ductile material characteristics (TS = 11–17 MPa, E = 4–41%, and EM = 4–11.3 MPa). These mechanical properties of the films were significantly affected by the glycerol concentration and the starch granule type used. The film solubility was low when compared to those reported in other studies. It increased with increasing plasticizer concentration. According to the XRD, the films showed a semi‐crystalline structure.  相似文献   

18.
采用流延法,制备一种含绿豆淀粉与聚乙烯醇(PVA)复合膜,并对其性能进行评价。采用单因素实验研究了绿豆淀粉与PVA比例、交联剂、增塑剂等因素对膜性能的影响,并利用正交实验法对绿豆淀粉与PVA质量比、增塑剂用量和交联剂用量进行的优化。结果表明,以绿豆淀粉∶PVA质量比、甘油和乙二醛的质量分数分别为7∶3(g/g)、20%、8%制备的膜的拉伸强度、断裂伸长率、透光率最佳,分别为(17.3±0.25)MPa、112%±2.15%、28.2%±0.23%。   相似文献   

19.
Films composed of cassava starch, chitosan and glycerol were produced by blown extrusion and employing a design for constrained surfaces and mixtures. The effects of the components of the mixture on the mechanical properties, water vapor permeability (WVP) and opacity of the films were studied. According to the models generated by the design, the concentration of starch had a positive effect in all properties. The plasticizer glycerol and its interactions with other components had a positive effect on increasing the WVP. The presence of a higher relative concentration of chitosan favored the formation of more rigid and opaque and less permeable films. In general, the concentrations of starch, chitosan and glycerol led to changes in the film properties, potentially affecting their performance. The design for constrained surfaces and mixtures proved to be a useful tool for this type of study due to the complexity of the conditions of film formation.  相似文献   

20.
Ho Jin Kang 《LWT》2010,43(6):903-105
Edible films were developed from potato peel. High-pressure, gamma-ray, and ultrasound were applied to potato peel solutions to break down biopolymer particles in the solution small enough to allow for biopolymer film formation. Film properties, including moisture barrier and tensile properties, color, and microstructures, were investigated from the films formed with different concentrations of plasticizer (glycerol) and emulsifier (soy lecithin). High-pressure homogenization (HPH) produced the best films among the treatments at the conditions used in this research. Water vapor permeability (WVP) of films decreased by 32% with decrease in the concentrations of glycerol and soy lecithin by 40 and 75%, respectively. As the concentration of glycerol or soy lecithin increased, tensile strength of the films decreased up to 71%, but the elongation at break increased up to 161%, demonstrating lubricant effects of glycerol and soy lecithin. The lightness and yellowness of the films increased and the redness decreased with increase in the concentration of glycerol or soy lecithin. The concentrations of glycerol and soy lecithin were identified as important variables in producing biopolymer films from potato peel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号