首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary: The use of hyperbranched polymers (HBP) with hydroxy functionality as modifiers for poly(L ‐lactic acid) (PLLA)‐flax fiber composites is presented. HBP concentrations were varied from 0 to 50% v/v and the static and dynamic tensile properties were investigated along with interlaminar fracture toughness. Upon addition of HBP, the tensile modulus and dynamic storage modulus (E′) both diminished, although a greater decline was noticed in the static modulus. The elongation of the composites with HBP showed a pronounced increase as large as 314% at 50% v/v HBP. The loss factor (tan δ) indicated a lowering of the glass transition temperature (Tg) due to a change in crystal morphology from large, mixed perfection spherulites to finer, smaller spherulites. The change in Tg could have also resulted from some of the HBP being miscible in the amorphous phase, which caused a plasticizing effect of the PLLA. The interlaminar fracture toughness measured as the critical strain energy release rate (GIC) was significantly influenced by HBP. At 10% v/v HBP, GIC was at least double that of the unmodified composite and a rise as great as 250% was achieved with 50% v/v. The main factor contributing to high fracture toughness in this study was better wetting of the fibers by the matrix when the HBP was present. With improved ductility of the matrix, it caused ductile tearing along the fiber‐matrix interface during crack propagation.

ESEM photograph of propagation region of the interlaminar fracture toughness specimens with 30% v/v of HBP.  相似文献   


2.
Interlaminar fracture properties of melt-infiltrated woven SiC/SiC ceramic matrix composites were investigated using traditional and wedge-loaded double cantilever beam methods. The two methods produced comparable GIC results for some specimens. The difference in boundary conditions between the two methods appeared to influence the crack propagation path. The DCB method, having free-end boundary condition, allowed more interaction between the crack and the composite microstructure than the wedge method did. The effect of fiber tow layout sequence had an effect on the interlaminar properties. Higher toughness was observed for the orientation where crack propagation occurs between planes with more transverse tows. Jump-arrest phenomenon was found to have higher significance on the rising R-curve behavior than fiber bridging.  相似文献   

3.
This paper reports on the Mode I interlaminar fracture toughness improvement of carbon fiber-epoxy composites as a result of incorporating SiC whiskers in the epoxy matrix. Five laminates of unidirectional carbon fiber-epoxy composites at different weight fractions of SiC whiskers were manufactured using hand layup vacuum bagging process. Optical and scanning electron microscopic analysis were conducted to give an insight into the fracture morphogoloy, failure mechanisms, and the energy dissipation mechanisms created by the presence of the whiskers in the composite. Experimental results showed that composites containing 5 wt% whiskers exhibited 67% increase in the crack initiation interlaminar fracture toughness GIC, whereas it exhibited 55% increase in the maximum GIC compared to pristine composite. The optical and SEM fractographs revealed a strong relation between the microstructure of the fractured surfaces and the energy release rate trend of the composites.  相似文献   

4.
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form GIC= A · Δ ab (where GIC is mode I interlaminar fracture toughness and Δ a is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness. GICini, can be defined as the GIC value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.  相似文献   

5.
Graphene oxide (GO) nanoparticles were introduced in the interlaminar region of carbon fiber–epoxy composites by dispersing it in a thermoplastic polymer carrier such as polyvinylpyrrolidone (PVP). Mode‐I fracture toughness (GIC) was investigated using double cantilever beam testing to evaluate the effect of the GO on the delamination behavior of the composite. The GO content was varied from 0% to 7% by weight as a function of the PVP content. Improvement of ~100% in the Mode I fracture toughness (GIC) was observed compared to composites with no GO. The optimum amount of nanoparticles for improving the interlaminar fracture toughness was found to be ~0.007% by weight of the composite. The increase in the value of flexural strength value was also observed. Scanning electron microscopy of fracture surfaces, X‐ray diffraction, and transmission electron microscopy, and reflectance Fourier transform infrared spectra, as well as Raman spectroscopy results, are presented to support the conclusions. POLYM. ENG. SCI., 59:1199–1208 2019. © 2019 Society of Plastics Engineers  相似文献   

6.
The effectiveness of using interleaved nylon veils to increase the interlaminar toughness of glass fiber reinforced, low‐styrene emission unsaturated polyester resin composites has been investigated. Samples were manufactured by a hand lay‐up technique followed by compression moulding. Nylon 66 veils were used, with the veil content varying from 0% to 4% by weight. Double cantilever beam, short beam shear, and three point bend tests were performed. The increasing levels of nylon veil content improved the interlaminar toughness of the composites, which was characterized by critical strain energy release rate (GIC). The maximum GIC for crack propagation of a nylon interleaved composite increased by almost 170% over the baseline glass fiber reinforced composite. Dynamic Mechanical Analysis revealed an increase in the damping parameter of up to 117%. Image analysis via Digital Image Correlation and Scanning Electron Microscopy revealed increased fiber bridging between adjacent plies as a key reason for these improvements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41462.  相似文献   

7.
The combined effect of varying loading rate and test temperature on the mode II interlaminar fracture properties of AS4/carbon fiber reinforced PEEK has been investigated. End notch flexure tests have shown that this thermoplastic‐based composite system offers a very high value of interlaminar fracture toughness at room temperature. Increasing the test temperature leads to a reduction in the mode II interlaminar fracture toughness of the composite, with the value at 150°C being approximately one half of the room temperature value. In contrast, increasing the crosshead displacement rate has been shown to increase the value of GIIc by up to 25%. A more detailed understanding of the effect of varying temperature and loading rate on the failure mechanisms occurring at the crack tip of these interlaminar fracture specimens has been achieved using the double end notch flexure (DENF) geometry. Here, extensive plastic flow within the crack tip region was observed in all specimens. It is believed that the rate sensitivity of GIIc reflects the rate‐dependent characteristics of the thermoplastic resin.  相似文献   

8.
To measure the sliding mode interlaminar fracture toughness of interply hybrid composites, end notched flexure (ENF) specimens with three different types of stacking sequence have been utilized. Finite element analysis is applied to separate the contribution from different modes on the strain energy release rate. In addition, the methods of beam theory, compliance, and compliance calibration to calculate the GC values are compared. The effects of interface friction, crack length, and specimen width are also discussed. The results show that the crack growth in the three types of specimens is dominated by the sliding mode and the Mode II interlaminar fracture toughness can be approximated. The compliance method is not recommended for hybrid ENF specimens and the effects of interface friction can be neglected. To get rid of the edge effect, the specimen width must be carefully chosen, while the fracture toughness does increase with the initial crack length.  相似文献   

9.
《Polymer Composites》2017,38(11):2501-2508
The effects of two thermoplastic micro‐veils, polyamide (PA) and polyethylene terephthalate (PET) veil, on the interlaminar fracture toughness of a glass fiber/vinyl ester (GF/VE) composite were investigated. The veils incorporated into the composite as interleaving materials were first characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), contact angle and tensile testing in order determine the best candidate as toughening agent for the GF/VE composite. Composite laminates were manufactured by vacuum‐assisted resin infusion process. Double cantilever beam (DCB) testing was performed to investigate the Mode I type interlaminar fracture toughness of the composites, which was characterized by critical strain energy release rate (G IC). An increased G IC was obtained by incorporating the PA veil, but it changed negligibly by the addition of the PET veil. The analysis of the composites fracture surface via SEM revealed increased fiber bridging between adjacent plies in the case of PA veil interleaved composites which played a key role in enhancing the Mode I interlaminar fracture toughness. However, the PET veil present in the interlaminar region did not take part in any energy absorbing mechanism during the delamination, thus keeping the G IC of the composite unaltered. POLYM. COMPOS., 38:2501–2508, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
Novel‐fluorinated poly(etherimide)s (FPEIs) with controlled molecular weights were synthesized and characterized, which were used to toughen epoxy resins (EP/FPEI) and carbon fiber‐reinforced epoxy composites (CF/EP/FPEI). Experimental results indicated that the FPEIs possessed outstanding solubility, thermal, and mechanical properties. The thermally cured EP/FPEI resin showed obviously improved toughness with impact strength of 21.1 kJ/m2 and elongation at break of 4.6%, respectively. The EP/FPEI resin also showed outstanding mechanical strength with tensile strength of 91.5 MPa and flexural strength of 141.5 MPa, respectively. The mechanical moduli and thermal property of epoxy resins were not affected by blending with FPEIs. Furthermore, CF/EP/FPEI composite exhibited significantly improved toughness with Mode I interlaminar fracture toughness (GIC) of 899.4 J/m2 and Mode II interlaminar fracture toughness (GIIC) of 1017.8 J/m2, respectively. Flexural properties and interlaminar shear strength of the composite were slightly increased after toughening. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
Aerospace‐grade bismaleimide matrix composites was toughened based on a novel ex situ resin transfer molding (RTM) technique using a special manufactured ES? carbon fabrics. The toughening mechanism and toughening effect by the technique are studied using thermoplastic PAEK as toughener. Mode I fracture toughness (GIC) of the composites toughened by ex situ RTM technique increased up to three times higher than that of the control system, and Mode II fracture toughness (GIIC) increased two times higher as well. The composite without toughening was denoted as control system. The microstructure revealed that a reaction‐induced phase decomposition and inversion happened in the interlaminar region, which resulted in a particles morphology that showed the thermosetting particles were surrounded with the PAEK phase. The plastic deformation and rupture of the continuous PAEK phase are responsible to the fracture toughness improvement. And the influence of PAEK concentration on toughness improvement was also investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The present paper is concerned with Mode I and Mode II delamination tests performed on three different glass fiber reinforced epoxy composites, chosen to obtain different final structures. The effect of crosshead speed on the fracture resistance of the composites was also analyzed. It was found that Mode I propagation values (GIC) increase as the crosshead speed decreases, probably because of the increase of brittleness in the studied range. An Arrhenius type relation between GIC and the glass transition temperature of the epoxy resin/amine system (Tg) was found. Mode II initiation values (GIICinit) and apparent shear strength (SH) were found to increase with the decrease of Tg. The relation between matrix toughness and composite interlaminar fracture toughness was also considered. Finally, the GIC propagation values were compared to the data available in literature for similar materials.  相似文献   

13.
The impact fracture toughness of nylon 6/continuous glass fiber composites at four levels of fiber content has been studied. The composites were produced by anionically polymerizing caprolactam within a glass mat using a vacuum injection technique. Application of linear elastic fracture mechanics to characterize the impact fracture toughness of the composites, using an energy approach (GIC), has been found to be applicable provided that a correction is made for the size of the damage zone. The concept of Jc, fracture energy per unit ligament area, has also been applied to the composites and agreement between GIC and Jc has been found to be reasonably satisfactory. The ratio of crack propagation energy to the total energy absorbed (ductility index) has also been calculated. The ductility index was found to be close to one for the composites, indicating that additional energy is involved in propagating the fracturing cracks probably due to fiber debonding and/or crack blunting and fiber pullout. Fractographic examination of the impact fracture surface confirmed the presence of these features.  相似文献   

14.
Studies were performed to synthesize new ether modified, flexibilized aromatic diamine hardeners for curing epoxy resins. The effect of moisture absorption on the glass transition temperatures of a tetraglycidyl epoxy, MY 720, cured with flexibilized hardeners and a conventional aromatic diamine was studied. Unidirectional composites, using epoxy-sized Celion 6000 graphite fiber as the reinforcement, were fabricated. The room temperature and 300°F mechanical properties of the composites, before and after moisture exposure, were determined. The Mode I interlaminar fracture toughness of the composites was characterized, using a double cantilever beam technique to calculate the critical strain energy release rate, GIC.  相似文献   

15.
The effect of physical aging on the penetration impact toughness and Mode I interlaminar fracture toughness of continuous carbon fiber (C.F.) reinforced poly(ether ether ketone) (PEEK) and poly(phenylene sulfide) (PPS) composites has been investigated by using an instrumented falling weight impact (IFWI) technique and a double cantilever beam (DCB) test. Composite materials studied are aged below their glass transition temperature (Tg) at various periods. Initiation force and energy of damage, failure propagation energy, impact energy and ductility index (D.I.) are reported. The Mode I critical value of strain energy release rate (GIC) of the unidirectional carbon fiber-reinforced PEEK (APC-2) composites is obtained. Results show that aging has a significant effect on the toughness of both composite materials. Energy absorbed during impact decreases with the increase of aging temperature and period. The PEEK/C.F. composites exhibit a higher retention of impact toughness than that of the PPS/C.F. composites after aging; however, the PPS/C.F. composites show a much higher ductility index. The Mode I fracture mechanism of the APC-2 composite is a combination of stable and unstable failure and shows a “stick-slip” behavior. Owing to the formation of a relative rigid structure, the fracture toughness (GIC) of APC-2 decreased with the increase of aging temperature and period.  相似文献   

16.
Carbon fiber reinforced poly(urethane‐isocyanurate)‐nanosilica composites CF‐(PUI‐NS) were manufactured by means of the vacuum‐assisted resin transfer moulding technique (VARTM) at very low NS concentrations (0–4 wt%). The high strain to failure of the PUI matrix (>7%) affected tensile tests by CF reorientation. Both the tensile strength and strain to failure were highly dependent on its kinematics. CF(PUI‐NS) caused an increase of the static toughness with a maximum improvement of tensile strain to failure and modulus of +28.8% and +39% at 1 wt% and 2 wt% of NS, respectively. The interlaminar shear strength (GIC) of the composites showed both a deterioration of ?12.9% and an improvement of +9.9% for NS concentrations of 1 wt% and 4 wt%, respectively. Regardless of the GIC value, all of the composites prepared with NS presented secondary maxima of the force versus displacement plots, indicating a substantial arrest of the crack propagation velocity after delamination started. Fractographic analysis revealed several features, such as fiber pull‐out, bridging as well as river patterns whereas the composites prepared with NS behaved in a more ductile fashion due to the presence of river patterns and a reduced fiber pull‐out. POLYM. ENG. SCI., 58:1241–1250, 2018. © 2017 Society of Plastics Engineers  相似文献   

17.
《Polymer Composites》2017,38(8):1732-1740
In this study, flax fiber reinforced and flax/basalt hybridized vinyl ester composites were produced and their interlaminar fracture toughness (mode II) behavior was investigated using the three‐point bend end‐notched flexural (3ENF) testing. From the results, the average of the maximum values for each group of specimen obtained for critical strain energy release rate G IIC and stress intensity factor K II for flax/vinyl ester specimens were 1,940 J/m2 and 134 kPam0.5. Similarly, G IIC and K II values recorded for hybridized specimens were 2,173 J/m2 and 178 kPam0.5, respectively. The results for the flax/basalt hybridized composites exhibited an improved fracture toughness behavior compared to flax/vinyl ester composites without hybridization. The cohesive zone modeling (CZM) was also used to predict the delamination crack propagation in mode‐II in laminated composite structures. After the experimental study, the 3ENF specimens were modeled and simulated using ANSYS. The CZM/FEA results were in reasonable agreement with the experimental results. POLYM. COMPOS., 38:1732–1740, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Carbon fiber‐reinforced epoxy composites, with incorporated carboxylic multiwall carbon nanotubes (CNTs), were prepared using vacuum‐assisted resin infusion (VARI) molding, and the in‐plane and out‐of‐plane properties, including mode‐I (GIc) and mode‐II (GIIc) interlaminar fracture toughness, interlaminar shear strength (ILSS), tensile, and flexural properties were measured. A novel spraying technique, which sprays a kind of epoxy resin E20 with high viscosity after spraying the CNTs, was adopted to deposit the CNTs on the surface of carbon fiber fabric. The E20 was used to anchor CNTs on the fabric surface, avoiding that the deposited CNTs were removed by the infusing resin during VARI process. The spraying processing, including spraying amount and spraying sequence, was optimized based on the distribution of CNTs on the fibers. After that, three composite specimen groups were fabricated using different carbon fiber fabrics, including as‐received, CNT‐deposited with E20, and CNT‐deposited without E20. The effects of CNTs on the processing quality and mechanical properties of carbon fiber‐reinforced polymer composites were studied. The experimental results show that all studied laminates have uniform thickness with designed values and no obvious defects form inside the laminates. Compared with the composite without CNTs, depositing CNTs with E20 increases by 24% in the average propagation GIc, by 11% in the propagation GIIc and by 12% in the ILSS, while it preserves the in‐plane mechanical properties, However, depositing CNTs without E20 reduces interlaminar fracture toughness. These phenomena are attributed to the differences in the distribution of CNTs and the fiber/matrix interfacial bonding for different spraying processing. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

19.
The use of interleaved polyethylene terephthalate (PET) veils to increase the interlaminar fracture toughness of glass fiber‐reinforced, low‐styrene emission, unsaturated polyester resin composites, was investigated. PET, being chemically similar to the unsaturated polyester resin, was expected to exhibit good wetting and strong interaction with the matrix. Composite laminates were manufactured by hand lay‐up, with the veil content varying up to 7%. The effects of PET veils on the interlaminar shear strength, flexural strength, flexural modulus, glass transition temperature, damping parameters, and Mode‐I interlaminar fracture toughness of the composite were studied. The veils were found to enhance most of these properties, with only minor negative effects on flexural stiffness and Tg. The PET/resin bonding did indeed prove to be strong, but the enhancement of fracture toughness was not as much as expected, because of the weaker glass/resin interface providing an alternative crack propagation path. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42877.  相似文献   

20.
Amorphous poly(ether imide) has been used as interlaminar toughening particulate agent in laminated carbon fiber/epoxy composites. Mode I and Mode II delamination fracture toughness was characterized using the double cantilever beam (DCB) and end-notched flexure (ENF) specimens. The delamination surface was examined using a scanning electron microscopy (SEM) to investigate relationships between the morphology and properties. The results revealed that the PEI-modified composites exhibited a significantly increased fracture toughness, which increased with the PEI content. GIC was improved from 165 to 540 J/m2 (at 1 mm/min crosshead speed). GIIC was improved more significantly from 290 to 1300 J/m2. It is believed that these values could be further improved if the processing cycle were to be optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号