首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intercrosslinked network of unsaturated polyester–bismaleimide modified epoxy matrix systems was developed. Epoxy systems modified with 10, 20, and 30% (by weight) of unsaturated polyester were made by using epoxy resin and unsaturated polyester with benzoyl peroxide and diaminodiphenylmethane as curing agents. The reaction between unsaturated polyester and epoxy resin was confirmed by IR spectral studies. The unsaturated polyester toughened epoxy systems were further modified with 5, 10, and 15% (by weightt) of bismaleimide (BMI). The matrices, in the form of castings, were characterized for their mechanical properties. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the matrix samples were performed to determine the glass transition temperature (Tg) and thermal degradation temperature of the systems, respectively. Mechanical properties, viz: tensile strength, flexural strength, and plain strain fracture toughness of intercrosslinked epoxy systems, were studied by ASTM methods. Data obtained from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improves toughness but with a reduction in glass transition, whereas the incorporation of bismaleimide into epoxy resin improved both mechanical strength and thermal behavior of epoxy resin. The introduction of bismaleimide into unsaturated polyester‐modified epoxy resin altered thermomechanical properties according to their percentage concentration. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2853–2861, 2002  相似文献   

2.
Interpenetrating networks of varying percentages of bismaleimide (BMI) in vinyl ester oligomer (VEO) modified unsaturated polyester (UP) matrices have been developed. Vinyl ester oligomer was prepared by reacting commercially available epoxy resin GY 250 (Ciba‐Geigy) and acrylic acid, and used as a toughening agent for unsaturated polyester resin. Unsaturated polyesters modified with 10, 20, and 30 wt % vinyl ester oligomer were made. The VEO toughened unsaturated polyester matrix systems, further modified with 5, 10, and 15 wt % bismaleimide (BMI). BMI–VEO–UP matrices were characterized using differential scanning calorimetry, thermogravimetric analysis, and heat deflection temperature analysis. The matrices, in the form of castings, were characterized for their mechanical properties according to ASTM methods: tensile strength, flexural strength, and unnotched Izod impact test. Data obtained from mechanical studies and thermal characterization indicate that the introduction of VEO and BMI into unsaturated polyester resin improves thermomechanical properties according to their percentage concentration. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2502–2508, 2002  相似文献   

3.
Novel hybrid intercrosslinked networks of hydroxyl‐terminated polydimethylsiloxane‐modified epoxy and bismaleimide matrix systems have been developed. Epoxy systems modified with 5, 10, and 15 wt % of hydroxyl‐terminated polydimethylsiloxane (HTPDMS) were developed by using epoxy resin and hydroxyl‐terminated polydimethylsiloxane with γ‐aminopropyltriethoxysilane (γ‐APS) as compatibilizer and dibutyltindilaurate as catalyst. The reaction between hydroxyl‐terminated polydimethylsiloxane and epoxy resin was confirmed by IR spectral studies. The siliconized epoxy systems were further modified with 5, 10, and 15 wt % of bismaleimide (BMI). The matrices, in the form of castings, were characterized for their mechanical properties. Differential scanning calorimetry and thermogravimetric analysis of the matrix samples were also performed to determine the glass‐transition temperature and thermal‐degradation temperature of the systems. Data obtained from mechanical studies and thermal characterization indicate that the introduction of siloxane into epoxy improves the toughness and thermal stability of epoxy resin with reduction in strength and modulus values. Similarly the incorporation of bismaleimde into epoxy resin improved both tensile strength and thermal behavior of epoxy resin. However, the introduction of siloxane and bismaleimide into epoxy enhances both the mechanical and thermal properties according to their percentage content. Among the siliconized epoxy/bismaleimide intercrosslinked matrices, the epoxy matrix having 5% siloxane and 15% bismaleimide exhibited better mechanical and thermal properties than did matrices having other combinations. The resulting siliconized (5%) epoxy bismaleimide (15%) matrix can be used in the place of unmodified epoxy for the fabrication of aerospace and engineering composite components for better performance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 38–46, 2001  相似文献   

4.
Novel intercrosslinked networks of siliconized epoxy‐1,2‐bis(maleimido)ethane matrix systems are developed. The siliconization of epoxy resin is carried out by using 5–15% hydroxyl‐terminated poly(dimethylsiloxane) with γ‐aminopropyltriethoxysilane as a crosslinking agent and dibutyltin dilaurate as a catalyst. The siliconized epoxy systems are further modified with 5–15% 1,2‐bis(maleimido)ethane and cured by using diaminodiphenylmethane. The prepared neat resin castings are characterized for their mechanical properties. Mechanical studies indicate that the introduction of siloxane into these epoxy resins improves the toughness with a reduction in the stress–strain values, whereas incorporation of bismaleimide (BMI) into the epoxy resin improves the stress–strain properties with a lowering of the toughness. The introduction of both siloxane and BMI into the epoxy resin influences the mechanical properties according to their content percentages. Differential scanning calorimetry (DSC), thermogravimetry, and heat distortion temperature analyses are also carried out to assess the thermal behavior of the matrix materials that are developed. DSC thermograms of the BMI modified epoxy systems show unimodal reaction exotherms. The glass‐transition temperature, thermal degradation temperature, and heat distortion temperature of the cured BMI modified epoxy and siliconized epoxy systems increase with increasing BMI content. The water absorption behavior of the matrix materials is also studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3808–3817, 2003  相似文献   

5.
An epoxy matrix system modified by diglycidylether‐terminated polydimethylsiloxane (DGETPDMS) and bismaleimide (BMI) was developed. Epoxy systems modified with 4, 8, and 12% (by wt) of DGETPDMS were made using epoxy resin and DGETPDMS, with diaminodiphenylmethane as the curing agent. The DGETPDMS‐toughened epoxy systems were further modified with 4, 8, and 12% (by wt) of BMI, namely (N,N′‐bismaleimido‐4,4′‐diphenylmethane). DGETPDMS/BMI/epoxy matrices were characterized using differential scanning calorimetry, thermogravimetric analysis, and heat deflection temperature analysis. The matrices, in the form of castings, were characterized for their mechanical properties, viz. tensile strength, flexural strength, and impact test, as per ASTM methods. Mechanical studies indicate that the introduction of DGETPDMS into epoxy resin improves the impact strength, with reduction in tensile strength, flexural strength, and glass transition temperature, whereas the incorporation of BMI into epoxy resin enhances the mechanical and thermal properties according to its percentage content. However, the introduction of both DGETPDMS and BMI enhances the values of thermomechanical properties according to their percentage content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 668–674, 2006  相似文献   

6.
Intercrosslinked network of siliconized epoxy-1,3-bis(maleimido)benzene matrix systems have been developed. The siliconization of epoxy resin was carried out by using various percentages of (5-15%) hydroxyl-terminated polydimethylsiloxane (HTPDMS) with γ-aminopropyltriethoxysilane (γ-APS) as crosslinking agent and dibutyltindilaurate as catalyst. The siliconized epoxy systems were further modified with various percentages of (5-15%) 1,3-bis(maleimido)benzene (BMI) and cured by using diaminodiphenylmethane (DDM). The neat resin castings prepared were characterized for their mechanical properties. Mechanical studies indicate that the introduction of siloxane into epoxy resin improves the toughness of epoxy resin with reduction in the values of stress-strain properties whereas, incorporation of bismaleimide into epoxy resin improves stress-strain properties with lowering of toughness. However, the introduction of both siloxane and bismaleimide into epoxy resin influences the mechanical properties according to their percentage content. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and measurement of heat distortion temperature were also carried out to assess the thermal behavior of the matrix samples. DSC thermogram of the BMI modified epoxy systems show unimodel reaction exotherms. The glass transition temperature (Tg), thermal degradation temperature and heat distortion temperature of the cured BMI modified epoxy and siliconized epoxy systems increase with increasing BMI content and this may be due to the homopolymerization of BMI rather than Michael addition reaction. The morphology of the BMI modified epoxy and siliconized epoxy systems were also studied by scanning electron microscopy.  相似文献   

7.
An intercrosslinked network of hybrid bismaleimide (BMI) modified vinyl ester oligomer–unsaturated polyester matrix systems have been developed. Vinyl ester oligomer (VEO) was used as a toughening agent for unsaturated polyester resin and was added in 2, 4, and 6% (by wt). Benzoyl peroxide was used as curing agent. The VEO‐toughened unsaturated polyester matrix systems were further modified with 5, 10, and 15% (by wt) of bismaleimide. Bismaleimides modified vinyl ester–unsaturated polyester matrices were characterized by mechanical (tensile strength, flexural strength, tensile modulus, flexural modulus, and impact strength), thermal [differential scanning calorimetry (DSC), thermogravimetic analysis (TGA), heat deflection temperature analysis (HDT)] and morphological studies [scanning electron microscope (SEM)] and water absorption. Data obtained from mechanical studies indicated that the introduction of VEO into unsaturated polyester resin improves the fracture toughness. The introduction of BMI into VEO incorporated unsaturated polyester resin enhanced both thermal and mechanical behavior. The scanning electron micrographs of fractured surfaces of VEO‐modified unsaturated polyester systems and BMI modified vinyl ester–unsaturated polyester matrices illustrate the presence of homogeneous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 167–177, 2007  相似文献   

8.
Epoxy resin has been chemically modified using 4, 8, and 12% of bisphenol-A based polysulphone along with three types of bismaleimides, namely [N, N′-bismaleimido-4,4′-diphenylmethane (BMI-1), 1,3-bis (maleimido) benzene (BMI-2) and 1,1′-bis (4-maleimidophenyl) cyclohexane (BMI-3)]. The epoxy hybrid matrices developed, in the form of castings, were used to characterize their mechanical properties like tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, hardness, and dynamic mechanical analysis as per ASTM standards. Data obtained from mechanical studies indicate that the introduction of hydroxyl terminated polysulfone into epoxy resin enhanced the value of impact strength to the extent of 48% due to the formation of flexible graft structures. Similarly, the incorporation of bismaleimides into epoxy resin also improved both tensile and flexural behavior of epoxy resin. Further, the introduction of combination of both polysulfone and bismaleimides into epoxy resin improved the mechanical properties according to their percentage content. Among the bismaleimides-modified polysulfone epoxy matrices, the epoxy matrix modified with 8% polysulfone and 8% BMI-2 exhibited better mechanical properties than other modified epoxy matrices.  相似文献   

9.
Novel bismaleimide‐modified siliconized epoxy intercrosslinked network systems were developed. Siliconized epoxy systems containing 5, 10, and 15% siloxane units were prepared using epoxy resin and hydroxyl‐terminated polydimethylsiloxane (HTPDMS) with γ‐aminopropyltriethoxysilane (γ‐APS) as a compatibilizer and dibutyltindilaurate as a catalyst. The siliconized epoxy systems were further modified with 5, 10, and 15% (wt %) of bismaleimide [(N,N′‐bismaleimido‐4,4′‐diphenylmethane) (BMI)] and cured by diaminodiphenylmethane (DDM). Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and heat‐distortion temperature measurement of the matrix samples were carried out to assess their thermal behavior. DSC thermograms of the BMI‐modified epoxy systems show unimodel reaction exotherms. The glass transition temperature (Tg) of the cured BMI‐modified epoxy and siliconized epoxy systems increases with increasing BMI content. Thermogravimetric analysis and heat‐distortion temperature measurements indicate that the thermal degradation temperature and heat‐distortion temperature of the BMI‐modified epoxy and siliconized epoxy systems increase with increasing BMI content. The morphology of the BMI‐modified siliconized epoxy systems was also studied by scanning electron microscopy (SEM). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2330–2346, 2001  相似文献   

10.
Intercrosslinked networks of bismaleimide (BMI) modified polyurethane–epoxy systems were prepared from chain‐extended BMI and polyurethane modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the grafting of polyurethane onto the epoxy skeleton. The prepared matrices were characterized by mechanical, thermal, and morphological studies. The results, obtained from the mechanical and thermal studies, reveal that the incorporation of polyurethane into epoxy increases the mechanical strength and decreases the glass‐transition temperature and thermal stability. The incorporation of chain‐extended BMI into polyurethane modified epoxy systems increases the thermal stability and both tensile and flexural properties, and decreases the impact strength and glass‐transition temperature. Surface morphologies of polyurethane modified epoxy and chain‐extended BMI modified polyurethane– epoxy systems were studied by scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1562–1568, 2003  相似文献   

11.
The bismaleimide (BMI)‐modified novolac resin was synthesized by allylation of the novolac resin and its “Ene” reaction with BMI. The reactions were monitored by Fourier transform infrared analysis (FTIR). The morphology of the BMI‐modified novolac resin changed with degree of allylation (i.e., the amount of BMI used). On the basis of the studies done by dynamical mechanical analysis (DMA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FE‐SEM), it was found that when the degree of allylation increased from 48 to 59%, the resin changed from a single‐phase structure to a two‐phase structure. From the research by thermogravimetric analysis (TGA) and DMA, it was found that the higher allyl‐content (when > 48%) caused a decrease of the thermal properties and mechanical properties of the resultant resin. The BMI‐modified allyl novolac resin with 48% degree of allylation has the best thermal properties and the highest dynamic modulus in the current research. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 76–83, 2006  相似文献   

12.
Interpenetrating polymer networks of bismaleimide‐modified polyurethane–epoxy systems were prepared using the aliphatic and aromatic bismaleimides‐ and polyurethane‐modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the polyurethane‐crosslinked epoxy (PU–EP). The matrices developed were characterized by mechanical, thermal, electrical, and morphological studies. The results obtained from the mechanical studies indicate that the incorporation of polyurethane and bismaleimides into epoxy increased the tensile strength, flexural strength, and impact strength, according to their nature and percentage concentration. The results obtained from the thermal and electrical studies indicate that the incorporation of polyurethane into epoxy decreased the thermal properties (glass transition temperature, heat distortion temperature (HDT), thermal stability) and electrical properties (dielectric strength, volume and surface resistivity, and arc resistance). The incorporation of aromatic bismaleimide into the polyurethane‐modified epoxy system increased the glass transition temperature, thermal stability, and electrical properties. Decreased values of glass transition and HDT were obtained in the case of aliphatic bismaleimide‐modified polyurethane–epoxy system. Surface morphology of modified epoxy systems was studied using scanning electron microscopy, and it was found that the polyurethane‐modified epoxy systems exhibited heterogeneous morphology and bismaleimides‐modified epoxy systems showed a homogeneous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3592–3602, 2006  相似文献   

13.
The intercrosslinked networks of unsaturated polyester (UP) toughened epoxy–clay hybrid nanocomposites have been developed. Epoxy resin (DGEBA) was toughened with 5, 10 and 15% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4′-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of unsaturated polyester with the epoxy resin was carried out thermally in presence of benzoyl peroxide-radical initiator and the resulting product was analyzed by FT-IR spectra. Epoxy and unsaturated polyester toughened epoxy systems were further modified with 1, 3 and 5% (by wt) of organophilic montmorillonite (MMT) clay. Clay filled hybrid UP-epoxy matrices, developed in the form of castings were characterized for their thermal and mechanical properties. Thermal behaviour of the matrices was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data resulted from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improved the thermal stability and impact strength to an appreciable extent. The impact strength of 3% clay filled epoxy system was increased by 19.2% compared to that of unmodified epoxy resin system. However, the introduction of both UP and organophilic MMT clay into epoxy resin enhanced the values of mechanical properties and thermal stability according to their percentage content. The impact strength of 3% clay filled 10% UP toughened epoxy system was increased by 26.3% compared to that of unmodified epoxy system. The intercalated nanocomposites exhibited higher dynamic modulus (from 3,072 to 3,820 MPa) than unmodified epoxy resin. From the X-ray diffraction (XRD) analysis, it was observed that the presence of d 001 reflections of the organophilic MMT clay in the cured product indicated the development of intercalated clay structure which in turn confirmed the formation of intercalated nanocomposites. The homogeneous morphologies of the UP toughened epoxy and UP toughened epoxy–clay hybrid systems were ascertained from scanning electron microscope (SEM).  相似文献   

14.
An intercrosslinked network of varying percentages of N,N′-bismaleimido-4,4′-disphenyl methane (BMI), vinyl ester oligomer (VEO) modified unsaturated polyester (UP) matrices have been developed. Vinyl ester oligomer was prepared by reacting commercially available epoxy resin GY 250 (Ciba-Geigy) and acrylic acid was used as toughening agent for unsaturated polyester resin. BMI-VEO-UP matrices were characterized for their mechanical properties, viz tensile strength, flexural strength and unntoched Izod impact test as per ASTM standards. The dielectric strength and water absorption measurements were also performed according to ASTM standards. Data obtained from mechanical studies, dielectric strength and water absorption indicate that the introduction of VEO into unsaturated polyester resin improves mechanical properties and affects the moisture resistance according to its percentage concentration. The incorporation of BMI into the VEO modified unsaturated polyester system improves mechanical properties, dielectric strength and resistance to moisture absorption according to its percentage concentration.  相似文献   

15.
A bismaleimide (BMI) resin was added to an epoxy system composed of N,N′-tetraglycidyldiaminodiphenyl methane (TGDDM) and diaminodiphenyl methane (DDM). Cure behavior of the BMI modified epoxy resins was studied by a dynamic differential scanning calorimetry (DSC) method. Dynamic DSC thermograms of the BMI modified epoxy resins indicated unimodal reaction exothermic peaks. The overall heat of reaction per unit mass decreased with BMI composition. The residual heat of reactions of the epoxy blends cured at 180°C for 3 h increased with BMI composition. Thermal stability of the epoxy system improved by incorporating BMI resin. Flexural strength and modulus increased with BMI composition.  相似文献   

16.
Novolac epoxy (EPN)—2,2′‐diallyl bisphenol A (DABA) resin system was modified by cocuring it with bisphenol A bismaleimide (BMI). Molar concentration of BMI in the stochiometric blend of EPN and DABA was varied from 0.5 to 2.0. The cure optimization was done using DSC, IR spectroscopy, and rheological studies. The curing proceeded by phenol‐epoxy and Alder‐ene reactions. The performance of the ternary Epoxy‐Allyl phenolic‐Bismaleimide system was evaluated through their thermal and dynamic mechanical characterization. BMI improved the overall thermal stability and the modulus of the resultant composites. The increase in BMI concentration in the system resulted in enhanced glass transition temperature with a consequent improvement in high temperature performance typically estimated by their lap shear strength at high temperatures. The high temperature performance of the epoxy‐phenol‐bismaleimide (EPB) system was found to be far superior to the epoxy‐phenol (EP)system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Allyl phenyl compounds, allyl epoxy resins, and epoxy acrylate resins are adapted to copolymerize with bismaleimide (BMI) resins and to modify mechanical properties and processing properties. Reaction activity, physical properties, mechanical properties, dielectric properties, and thermal stability were investigated. Impact strength and flexural strength of modified BMI resin are increased about twice and 42% than that of pure BMI resin, respectively. Fracture elongation is from 1.6 to 2.3%. The fracture surfaces of the broken specimens are examined by scanning electron microscopy (SEM). As a result, modified BMI resins put up typical toughness rupture. The modified BMI resins possess excellent dielectric properties, and dielectric constant and dielectric loss almost hold the line with increasing epoxy concentration. When the test frequency scope is from 1 to 20 GHz, the dielectric constant and dielectric loss of modified BMI resins is 3.05–3.12 and 0.0089–0.012, respectively. The modified BMI resins still possess fine properties after hydrothermal aging. After 100 h in boiling water, the reservation ratios of both the impact strength and flexural strength of modified system exceeded 90%, and the water absorption and heat distortion temperature (HDT) is 2.6% and 235°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 315–319, 2006  相似文献   

18.
In this work, we prepared the interpenetrating polymer networks of bismaleimide and polyether-type polyurethane(polyoxypropylene)–crosslinked epoxy (BMI/PU(PPG)–EP IPNs) by employing the simultaneous bulk polymerization technique. The polyurethane (PU)–crosslinked epoxy was identified via infrared (IR) spectra analysis. Also investigated herein were the mechanical properties, including tensile strength, Izod impact strength, and fracture energy (GIC) of the IPNs with various BMI contents in PU–crosslinked epoxy matrix. In addition, differential scanning calorimetry (DSC) analysis and the thermogravimetric analysis (TGA) were performed to examine the thermal properties of the BMI/PU(PPG)–EP IPNs. In addition, morphology and dynamic mechanical analysis (DMA) of the BMI/PU(PPG)–EP IPNs were also studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2635–2645, 1998  相似文献   

19.
以聚砜(PSF)改性环氧树脂(EP)为基体树脂,玻璃纤维为增强材料,采用高温模压成型法制备出PSF改性EP/玻璃纤维复合材料。结果表明:PSF能有效提高EP基体的热稳定性能;经200℃热老化72 h后,PSF改性EP/玻璃纤维复合材料的热失重率<1%,其冲击强度和弯曲强度呈先升后降态势,电绝缘性能仍然较好(其体积电阻率和表面电阻率的数量级仍保持在1012左右);该复合材料在高温绝缘场合中具有良好的应用前景。  相似文献   

20.
Summary One new high performance modified BMI resin matrix with enhanced processing characteristics, made from 4,4-bismaleimidodiphenyl methane (BDM) and allyl phenyl compounds, allyl epoxy resins and epoxy acrylate resins, were developed. Solubility, differential scanning calorimetry (DSC), gel time, and Fourier transform infrared (FTIR) spectroscopy were used to detect the structure and processing characteristics of the modified BMI resin and neat BDM. Results show that the new modified BMI resin systems have enhanced processability compared with neat BDM, especially improved solubility and faster thermal polymerization rate. In addition, the new cured systems have more than two times improved impact strength without a great decrease in excellent dielectric properties or thermal and hot–wet resistance of neat BDM resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号