首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of doped Ruddlesden–Popper phases, of general formula Sr3Ti2-xMxO7-δ (M=Al, Ga, Co), were synthesized and their electrical conductivity characterized as a function of temperature and oxygen partial pressure. For fixed-valent dopants, p-type conductivity predominates at p(O2)> 10−5 atm, followed by a p(O2)-independent electrolytic regime, and n-type electronic conductivity at very low p(O2). The electrolytic regime exhibits activation energies in the range 1·7–1·8 eV. Doping with transition metals such as Co results in a very significant increase in total conductivity with a p-type conductivity at high p(O2). Furthermore, an apparent ionic regime at intermediate p(O2) is observed, characterized by high conductivity (> 10−2 S/cm at 700°C) and low activation energy (0·6 eV). This interpretation is consistent with iodometric measurements as interpreted by a defect chemical model. Other measurements are in progress to confirm this conclusion.  相似文献   

2.
In this study, the ceramic powders of Ce1?xGdxO2?x/2 and Ce1?xNdxO2?x/2 (x=0.05, 0.10, 0.15, 0.20 and 0.25) were synthesized by ultrasound assisted co-precipitation method. The ionic conductivity was studied as a function of dopant concentration over the temperature range of 300–800 °C in air, using the impedance spectroscopy. The maximum ionic conductivity, σ800 °C=4.01×10?2 Scm?1 with the activation energy, Ea=0.828 kJmol?1 and σ800 °C=3.80×10?2 Scm?1 with the activation energy, Ea=0.838 kJmol?1 were obtained for Ce0.90Gd0.10O1.95 and Ce0.85Nd0.15O1.925 electrolytes, respectively. The average grain size was found to be in the range of 0.3–0.6 μm for gadolinium doped ceria and 0.2–0.4 μm for neodymium doped ceria. The uniformly fine crystallite sizes (average 12–13 nm) of the ultrasound assisted prepared powders enabled sintering of the samples into highly dense (over 95%) ceramic pellets at 1200 °C (5 °C min?1) for 6 h.  相似文献   

3.
The intermediate temperature electrolytes La1?xSrxGa1?yMgyO3?δ (LSGM, where δ = (x + y)/2) with perovskite structure were prepared using a poly(vinyl alcohol) (PVA) solution polymerization method. Three secondary phases were identified by X-ray diffraction, LaSrGaO4, LaSrGa3O7 and La4Ga2O9. The relative amount of these secondary phases depended on the doping compositions. Sr doping produced more Sr rich secondary phases with increasing content, while enhanced solid solubility was observed with Mg addition. Sintered samples showed dense microstructures with well-developed equiaxed grains, and the secondary phases were mainly in the grain boundaries. LaSrGaO4 could not be detected by SEM for the sintered pellets. The oxygen ionic conductivity was enhanced by doping with Sr and Mg. Mg doping showed the increased conductivity activation energy. La0.8Sr0.2Ga0.9Mg0.1O2.85 had the highest ionic conductivity σ = 0.128 S/cm at 800 °C in this work.  相似文献   

4.
《Ceramics International》2017,43(9):7153-7158
In this work, Yb3+ was selected to replace the Y3+ in yttrium aluminum garnet (YAG) in order to reduce its thermal conductivity under high temperature. A series of (Y1-xYbx)3Al5O12 (x=0, 0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reaction at 1600 °C for 10 h. The microstructure, thermophysical properties and phase stability under high temperature were investigated. The results showed that all the Yb doped (Y1-xYbx)3Al5O12 ceramics were comprised of a single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xYbx)3Al5O12 ceramics firstly decreased and subsequently increased with Yb ions concentration rising from room temperature to 1200 °C. (Y0.7Yb0.3)3Al5O12 had the lowest thermal conductivity among investigated specimens, which was about 1.62 W m−1 K−1 at 1000 °C, around 30% lower than that of pure YAG (2.3 W m−1 K−1, 1000 °C). Yb had almost no effect on the coefficients of thermal expansion (CTEs) of (Y1-xYbx)3Al5O12 ceramics and the CTE was approximate 10.7×10−6 K−1 at 1200 °C. In addition, (Y0.7Yb0.3)3Al5O12 ceramic remained good phase stability when heating from room temperature to 1450 °C.  相似文献   

5.
The microstructure, thermal expansion, microhardness, indentation fracture toughness, and ionic conductivity of neodymium-doped ceria (NDC) prepared by coprecipitation were investigated. The results revealed that the average particle size (DBET) ranged from 20.1 to 25.8 nm, crystallite dimension (DXRD) varied from 17.5 to 20.7 nm, and the specific surface area distribution was from 31.25 to 40.27 m2/g for neodymium-doped ceria stacking powders. Dependence of lattice parameter, a, versus dopant concentration, x, of Nd3+ ion shows that these solid solutions obey Vegard's rule as a(x) = 5.4069 + 0.1642x for Ce1?xNdxO2?(1/2)x for x = 0.05–0.25. For neodymium-doped ceria ceramics sintered at 1500 °C for 5 h, the bulk density was over 95% of the theoretical density. The maximum ionic conductivity, σ800°C = 4.615 × 10?2 S/cm, with the minimum activation energy, Ea = 0.794 eV was found for the Ce0.75Nd0.25O1.875 ceramic. Trivalent, neodymium-doped ceria ceramics revealed high fracture toughness, the fracture toughness distribution was in the range of 6.236 ± 0.021 to 6.846 ± 0.017 MPa m1/2. The high indentation fracture toughness of neodymium-doped ceria was attributed to crack deflection. Moreover, the porosity may influence the mechanical properties such as microhardness and fracture toughness. It was observed that as the porosity reduced, the microhardness and fracture toughness increased.  相似文献   

6.
The oxygen permeability of mixed-conducting Sr1−xCaxFe1−yAlyO3−δ (x=0–1.0; y=0.3–0.5) ceramics at 850–1000 °C, with an apparent activation energy of 120–206 kJ/mol, is mainly limited by the bulk ionic conduction. When the membrane thickness is 1.0 mm, the oxygen permeation fluxes under pO2 gradient of 0.21/0.021 atm vary from 3.7×10−10 mol s−1 cm−2 to 1.5×10−7 mol s−1 cm−2 at 950 °C. The maximum solubility of Al3+ cations in the perovskite lattice of SrFe1−yAlyO3−δ is approximately 40%, whilst the brownmillerite-type solid solution formation range in Sr1−xCaxFe0.5Al0.5O3−δ system corresponds to x>0.75. The oxygen ionic conductivity of SrFeO3-based perovskites decreases moderately on Al doping, but is 100–300 times higher than that of brownmillerites derived from CaFe0.5Al0.5O2.5+δ. Temperature-activated character and relatively low values of hole mobility in SrFe0.7Al0.3O3−δ, estimated from the total conductivity and Seebeck coefficient data, suggest a small-polaron mechanism of p-type electronic conduction under oxidising conditions. Reducing oxygen partial pressure results in increasing ionic conductivity and in the transition from dominant p- to n-type electronic transport, followed by decomposition. The low-pO2 stability limits of Sr1−xCaxFe1−yAlyO3−δ seem essentially independent of composition, varying between that of LaFeO3−δ and the Fe/Fe1−γO boundary. Thermal expansion coefficients of Sr1−xCaxFe1−yAlyO3−δ ceramics in air are 9×10−6 K−1 to 16×10−6 K−1 at 100–650 °C and 12×10−6 K−1 to 24×10−6 K−1 at 650–950 °C. Doping of SrFe1−yAlyO3−δ with aluminum decreases thermal expansion due to decreasing oxygen nonstoichiometry variations.  相似文献   

7.
The maximum solubility of aluminum cations in the perovskite lattice of Sr0.7Ce0.3Mn1−xAlxO3−δ is approximately 15%. The incorporation of Al3+ increases oxygen ionic transport due to increasing oxygen nonstoichiometry, and decreases the tetragonal unit cell volume and thermal expansion at temperatures above 600 °C. The total conductivity of Sr0.7Ce0.3Mn1−xAlxO3−δ (x = 0–0.2), predominantly electronic, decreases with aluminum additions and has an activation energy of 10.2–10.9 kJ/mol at 350–850 °C. Analysis of the electronic conduction and Seebeck coefficient of Sr0.7Ce0.3Mn0.9Al0.1O3−δ, measured in the oxygen partial pressure range from 10−18 to 0.5 atm at 700–950 °C, revealed trends characteristic of broad-band semiconductors, such as temperature-independent mobility. The temperature dependence of the charge carrier concentration is weak, but exhibits a tendency to thermal excitation, whilst oxygen losses from the lattice have an opposite effect. The role of the latter factor becomes significant at temperatures above 800 °C and on reducing p(O2) below 10−4 to 10−2 atm. The oxygen permeability of dense Sr0.7Ce0.3Mn1−xAlxO3−δ (x = 0–0.2) membranes, limited by both bulk ionic conduction and surface exchange, is substantially higher than that of (La, Sr)MnO3-based materials used for solid oxide fuel cell cathodes. The average thermal expansion coefficients of Sr0.7Ce0.3Mn1−xAlxO3−δ ceramics in air are (10.8–11.8) × 10−6 K−1.  相似文献   

8.
The solubility of Ti4+ in the lattice of apatite-type La9.83Si6−xTixO26.75 corresponds to approximately 28% of the Si-site density. The conductivity of La9.83Si6−xTixO26.75 (x = 1–2) is predominantly oxygen-ionic and independent of the oxygen partial pressure in the p(O2) range from 10−20 to 0.3 atm. The electron transference numbers determined by the modified faradaic efficiency technique are lower than 0.006 at 900–950 °C in air. The open-circuit voltage of oxygen concentration cells with Ti-doped silicate electrolytes is close to the theoretical Nernst value both under oxygen/air and air/10%H2–90%N2 gradients at 700–950 °C, suggesting the stabilization of Ti4+ in the apatite structure. Titanium addition in La9.83Si6−xTixO26.75 (x = 1–2) leads to decreasing ionic conductivity and increasing activation energies from 93 to 137 kJ/mol, and enhanced degradation in reducing atmospheres due to SiO volatilization. At p(O2) = 10−20 atm and 1223 K, the conductivity decrease after 100 h was about 5% for x = 1 and 17% for x = 2. The solubility of Zr4+ in the La9.83Si6−xZrxO26.75 system was found to be negligible, while the maximum concentration of Ce4+ in La9.4−xCexSi6O27−δ is approximately 5% with respect to the number of lanthanum sites.  相似文献   

9.
Mn2+-doped Sn1−xMnxP2O7 (x = 0–0.2) are synthesized by a new co-precipitation method using tin(II)oxalate as tin(IV) precursor, which gives pure tin pyrophosphate at 300 °C, as all the reaction by-products are vaporizable at <150 °C. The dopant Mn2+ acts as a sintering aid and leads to dense Sn1−xMnxP2O7 samples on sintering at 1100 °C. Though conductivity of Sn1−xMnxP2O7 samples in the ambient atmosphere is 10−9–10−6 S cm−1 in 300–550 °C range, it increases significantly in humidified (water vapor pressure, pH2O = 0.12 atm) atmosphere and reaches >10−3 S cm−1 in 100–200 °C range. The maximum conductivity is shown by Sn0.88Mn0.12P2O7 with 9.79 × 10−6 S cm−1 at 550 °C in ambient air and 2.29 × 10−3 S cm−1 at 190 °C in humidified air. It is observed that the humidification of Sn1−xMnxP2O7 samples is a slow process and its rate increases at higher temperature. The stability of Sn1−xMnxP2O7 samples is analyzed.  相似文献   

10.
In the past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cells (SOFCs) down to about 700 °C.Apatite materials (La10?xSrxSi6O27?x/2) are attractive candidates for solid electrolytes, with a high ionic conductivity at 700 °C, a chemical and a dimensional stability for a pO2 ranging from 10?25 to 0.2 atm. A perovskite oxide (La0.75Sr0.25Mn0.8Co0.2O3?δ) has been used as a cathode material.Symmetrical cathode/electrolyte/cathode cells were fabricated by stacking layers obtained by tape casting of apatite and perovskite powders and co-sintering at 1400 °C for 2 h in air.Impedance spectroscopy measurements were performed on these cells in order to determine the electrode resistance. It has been shown that the latter decreases with the porosity content of the cathode and with the use of a composite material (apatite/perovskite) instead of a simple perovskite.  相似文献   

11.
Nanoperovskite oxides, Ba0.2Sr0.8Co0.8Fe0.2O3?δ (BSCF), were synthesized via the co-precipitation method using Ba, Sr, Co, and Fe nitrates as precursors. Next, half cells were fabricated by painting BSCF thin film on Sm0.2Ce0.8Ox (samarium doped ceria, SDC) electrolyte pellets. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) measurements were carried out on the BSCF powders and pellets obtained after sintering at 900 °C. Investigations revealed that single-phase perovskites with cubic structure was obtained in this study. The impedance spectra for BSCF/SDC/BSCF cells were measured to obtain the interfacial area specific resistances (ASR) at several operating temperatures. The lowest values of ASR were found to be 0.19 Ω cm2, 0.14 Ω cm2 0.10 cm2, 0.09 Ω cm2 and 0.07 Ω cm2 at operating temperatures of 600 °C, 650 °C, 700 °C, 750 °C and 800 °C, respectively. The highest conductivity was found for cells sintered at 900 °C with an electrical conductivity of 153 S cm?1 in air at operating temperature of 700 °C.  相似文献   

12.
Polycrystalline GdSm1?xCaxZr2O7?x/2 (0  x  0.20) ceramics have been prepared by the solid-state reaction method. The effects of CaO addition on the microstructure and electrical properties of the pyrochlore-type GdSmZr2O7 ceramic were investigated. GdSm1?xCaxZr2O7?x/2 (x  0.05) ceramics exhibit a pyrochlore-type structure; however, GdSm1?xCaxZr2O7?x/2 (0.10  x  0.20) ceramics consist of the pyrochlore-type structure and a small amount of CaZrO3. The total conductivity of GdSm1?xCaxZr2O7?x/2 ceramics follows the Arrhenius relation, and gradually increases with increasing temperature from 723 to 1173 K. GdSm1?xCaxZr2O7?x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10?4–1.0 atm at each test temperature. The highest total conductivity is about 1.20 × 10?2 S cm?1 at 1173 K for the GdSm0.9Ca0.1Zr2O6.95 ceramic.  相似文献   

13.
In this study, CrxSn1−xO2 (0  x  0.06) and Cr0.03Sn0.97−yTiyO2 (0 < y  0.97) compositions were synthesized by the ceramic method and characterized by X-ray diffraction, UV–vis spectroscopy and CIE L*a*b* (Commission Internationale de l’Eclairage L*a*b*) parameters measurements. From CrxSn1−xO2 samples fired at 1600 °C/1 h, x = 0.03 was established as the composition limit of formation of solid solutions. When x  0.01, better coloration of glazed tiles were obtained from short thermal treatment (1400 °C/1 h or 1600 °C/1 h) than from long thermal treatment (1400 °C/24 h). When 0.01 < x < 0.06 small variations of color in glazed tiles were obtained from samples fired at 1400 °C/24 h and 1600 °C/1 h. From Cr0.03Sn0.97−yTiyO2 compositions, a better purple color was obtained when y = 0.02 (Ti/Sn  2.1 × 10−2) than when y = 0.  相似文献   

14.
《Ceramics International》2017,43(17):14836-14841
Molybdenum doping is introduced to improve the electrochemical performance of lithium-rich manganese-based cathode material. X-ray diffraction (XRD) results illustrate that the crystallographic parameters a, c and lattice volume V become larger with the increase of Mo content. The scanning electron microscope (SEM) shows that the molybdenum substitution increases the crystallinity of the primary particles. When evaluated as cathode material, the as-prepared Li[Li0.2Mn0.54-x/3Ni0.13-x/3Co0.13-x/3Mox]O2 (x = 0.007) delivers a discharge capacity of 155.5 mA h g−1 at 5 C (1 C = 250 mA g−1) and exhibits the capacity retention of 81.8% at 1 C after 200 cycles. The results of cyclic voltammetry (CV) and electronic impedance spectroscopy (EIS) tests reflect that the molybdenum substitution is able to significantly reduce the electrode polarization and lower the charge-transfer resistance. Within appropriate amount of Mo doping, the lithium ion diffusion coefficient of the material can reach to 8.92 × 10–15 cm2 s−1, which is ~ 30 times higher than that of pristine materials (2.65 × 10–16 cm2 s−1).  相似文献   

15.
Solid solutions of Co and Mg diphosphates with compositions Co2?xMgxP2O7 (x = 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5 and 1.8) have been prepared and characterized for the first time as alternative low-toxicity blue ceramic pigments. The compositions were prepared through the conventional coprecipitation route and calcined up to 1000 °C/2 h. Samples were characterized by thermal analysis, XRD, SEM/EDX, UV–vis-NIR spectroscopy and colour measurements (CIE-L*a*b*). Isostructural Co2?xMgxP2O7 diphosphate solid solutions (monoclinic system and P21/c spatial group) formed successfully within the studied range of compositions, accompanied only by a minor quantity of residual Co or Mg orthophosphates (M3(PO4)2). Interestingly, the obtained solid solutions developed nice blue-violet colourations even with high Mg doping after enamelling within double-firing (x = 1.5–1.8) and single-firing (x = 1.0–1.5) ceramic glasses. These optimal compositions containing a minimized Co amount (measured values around 7–16 wt%) could be therefore less toxic alternatives to the conventional Co3(PO4)2 blue ceramic pigment.  相似文献   

16.
《Ceramics International》2016,42(12):13404-13410
A series of CaZr1−xScxO3−α (x=0, 0.05, 0.10, 0.15) perovskite oxide ceramics were successfully fabricated at 1400 °C for 10 h and then further sintered at 1650 °C for 10 h via a solid-state reaction sintering process. Conductivities of the ceramics were measured under the atmosphere that contains 1% H2/Ar and 5.63 kPa H2O/Ar by the electrochemical impedance spectra technique. It was found that the conductivities of CaZr1−xScxO3−α (x=0, 0.05, 0.10, 0.15) ceramics increased with the increase of the measuring temperature, and the conductivity achieved its maximum value of 2.03×10−5–6.5×10−3 S cm−1 when the doping amount of Sc (x) was 0.10. Additionally, element doping can increase the conductivities and decrease the conductivity activation energies of CaZr1−xScxO3−α ceramics. The results of transport number measurement indicated that the CaZr0.9Sc0.1O3−α is almost a pure protonic conductor at 500–750 °C, while it is a mixed protonic-oxygen ionic-electronic conductor at 750–1300 °C.  相似文献   

17.
Solid solutions of (x)Re(Co1/2Ti1/2)O3–(1  x)CaTiO3 (Re = La and Nd, abbreviated to xLCT and xNCT, respectively) where x = 0, 0.25, 0.5, 0.75 and 1 have been fabricated using solid state synthesis. Samples have been examined using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM) and their dielectric properties measured at microwave (MW) frequencies. Formation of single phase solid solutions were confirmed by XRD and the measured lattice parameters varied linearly from LCT (a = 5.66 Å, b = 7.867 Å and c = 5.494 Å) and NCT (a = 5.636 Å, b = 7.914 Å and c = 5.461 Å) to CT (a = 5.596 Å, b = 7.731 Å and c = 5.424 Å). XRD and TEM confirmed both in-phase and antiphase rotations of O-octahedra consistent with an aac+ tilt system across the entire solid solution series. Electron diffraction revealed that LCT and NCT have reflections associated with B-site cation ordering which is absent for x  0.75. MW dielectric measurements showed that LCT and NCT were highly insulating with microwave quality factor (Qf0) values of 39,000 and 34,000, respectively. Compositions anticipated to have a zero temperature coefficient of resonant frequency (τf) are 0.48LCT-CT and 0.52NCT-CT with ɛr = 45 and Qf0  5000 and ɛr = 43 and Qf0  4000, respectively.  相似文献   

18.
《Ceramics International》2016,42(7):8627-8635
Single-phase M-type hexagonal ferrites, SrBixFe12−xO19 (0.0≤x≤1.0), were prepared by a co-precipitation assisted ceramic route. The influence of the Bi3+ substitution on the crystallization of ferrite phase has been examined using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. The XRD data show that the nanoparticles crystallize in the single hexagonal magnetoplumbite phase with the crystallite size varying between 65 and 82 nm. A systematic change in the lattice constants, a=b and c, was observed because of the ionic radius of Bi3+ (1.17 Å) being larger than that of Fe3+ ion (0.64 Å). SEM analysis indicated the hexagonal shape morphology of products. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi substitutions have been determined.  相似文献   

19.
A chemical solution processing method based on sol-gel chemistry (SG) was used to synthesize (1-x)Y2/3Cu3Ti4O12-xSrTiO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) ceramics successfully. The 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics sintered at 1050 °C for 20 h showed fine-grained microstructure and high dielectric constant (ε′  1.7 × 105) at 1 kHz. Furthermore, the 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics appeared distinct pseudo-relaxor behavior. Two electrical responses were observed in the combined modulus and impedance plots, indicating the presence of Maxwell-Wagner relaxation. Sr vacancies and additional oxygen vacancies had substantial contribution to the sintering behavior, an increase in grain growth, and relaxation behaviors in grain boundaries. The contributions of semiconducting grains with the nanodomain and insulating grain boundaries (corresponding to high-frequency and low-frequency electrical response, respectively) played important roles in the dielectric properties of (1-x)Y2/3Cu3Ti4O12-xSrTiO3 ceramics. The occurrence of the polarization mechanism transition from the grain boundary response to the electrode one with temperature change was clearly evidenced in the low frequency range.  相似文献   

20.
BaxSr1−xCo0.8Fe0.2O3−δ (0.3  x  0.7) composite oxides were prepared and characterized. The crystal structure, thermal expansion and electrical conductivity were studied by X-ray diffraction, dilatometer and four-point DC, respectively. For x  0.6 compositions, cubic perovskite structure was obtained and the lattice constant increased with increasing Ba content. Large amount of lattice oxygen was lost below 550 °C, which had significant effects on thermal and electrical properties. All the dilatometric curves had an inflection at about 350–500 °C, and thermal expansion coefficients were very high between 50 and 1000 °C with the value larger than 20 × 10−6 °C−1. The conductivity were larger than 30 S cm−1 above 500 °C except for x > 0.5 compositions. Furthermore, conductivity relaxation behaviors were also investigated at temperature 400–550 °C. Generally, Ba0.4Sr0.6Co0.8Fe0‘2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ are potential cathode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号