首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the pervasive growth in the popularity of IEEE 802.11‐based wireless local area networks (WLANs) worldwide, the demand to support delay‐sensitive services such as voice has increased very rapidly. This paper provides a comprehensive survey on the medium access control (MAC) architectures and quality of service (QoS) provisioning issues for WLANs. The major challenges in providing QoS to voice services through WLAN MAC protocols are outlined and the solution approaches proposed in the literature are reviewed. To this end, a novel QoS‐aware wireless MAC protocol, called hybrid contention‐free access (H‐CFA) protocol and a call admission control technique, called traffic stream admission control (TS‐AC) algorithm, are presented. The H‐CFA protocol is based on a novel idea that combines two contention‐free wireless medium access approaches, that is, round‐robin polling and time‐division multiple access (TDMA)‐like time slot assignment, and it increases the capacity of WLANs through efficient silence suppression. The TS‐AC algorithm ensures efficient admission control for consistent delay‐bound guarantees and further maximizes the capacity through exploiting the voice characteristic that it can tolerate some level of inconsecutive packet loss. The benefits of the proposed schemes are demonstrated in the simulations results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The General Packet Radio Service (GPRS) offers performance guaranteed packet data services to mobile users over wireless frequency-division duplex links with time division multiple access, and core packet data networks. This paper presents a dynamic adaptive guaranteed Quality-of-Service (QoS) provisioning scheme over GPRS wireless mobile links by proposing a guaranteed QoS media access control (GQ-MAC) protocol and an accompanying adaptive prioritized-handoff call admission control (AP-CAC) protocol to maintain GPRS QoS guarantees under the effect of mobile handoffs. The GQ-MAC protocol supports bounded channel access delay for delay-sensitive traffic, bounded packet loss probability for loss-sensitive traffic, and dynamic adaptive resource allocation for bursty traffic with peak bandwidth allocation adapted to the current queue length. The AP-CAC protocol provides dynamic adaptive prioritized admission by differentiating handoff requests with higher admission priorities over new calls via a dynamic multiple guard channels scheme, which dynamically adapts the capacity reserved for dealing with handoff requests based on the current traffic conditions in the neighboring radio cells. Integrated services (IntServ) QoS provisioning over the IP/ATM-based GPRS core network is realized over a multi-protocol label switching (MPLS) architecture, and mobility is supported over the core network via a novel mobile label-switching tree (MLST) architecture. End-to-end QoS provisioning over the GPRS wireless mobile network is realized by mapping between the IntServ and GPRS QoS requirements, and by extending the AP-CAC protocol from the wireless medium to the core network to provide a unified end-to-end admission control with dynamic adaptive admission priorities.  相似文献   

3.
The architecture in a differentiated services (DiffServ) network is based on a simple model that applies a per‐class service in the core node of the network. However, because the network behavior is simple, the network structure and provisioning is complicated. If a service provider wants dynamic provisioning or a better bandwidth guarantee, the differentiated services network must use a signaling protocol with QoS parameters or an admission control method. Unfortunately, these methods increase the complexity. To overcome the problems with complexity, we investigated scalable dynamic provisioning for admission control in DiffServ networks. We propose a new scalable qDPM2 mechanism based on a centralized bandwidth broker and distributed measurement‐based admission control and movable boundary bandwidth management to support heterogeneous QoS requirements in DiffServ networks.  相似文献   

4.
Owing to limited wireless network resources, network applications must provide an adaptive quality‐guaranteed service to satisfy user requirements. Different applications are associated with different quality of service (QoS) concerns, as well as different QoS control parameters. This work presents an adaptive QoS algorithm by discussing the QoS specifications of three wireless access technologies, i.e. 3G, WiMAX and WiFi. Based on cross‐layer and cognition concepts, these environmental parameters are integrated with the sensing of spectral and received signal strength from a cognitive radio paradigm. An adaptive QoS algorithm is then proposed to select the optimal access network for services. Simulation results indicate that the proposed adaptive QoS algorithm outperforms available ones in real‐time applications. Compared with traditional algorithms, the proposed algorithm reduces not only the average delay time and jitter for VoIP services to 0.16 s and 0.09 ms, respectively, but also the packet loss ratio for high‐definition video streaming by 3.4%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Future mobile services are expected to include various non‐voice oriented services. One important category of non‐voice oriented mobile services is non‐real‐time services. When a mobile user establishes a connection to access non‐real‐time service, the mobile user usually cares about whether the total time to complete its data transfer is within its time tolerance. In addition, different mobile users may have different bandwidth requirements and different tolerances in the total completion time. It is essential for wireless systems to provide various mobile users with different total completion times. In this paper, two quality‐of‐service (QoS) metrics, called stretch ratio and eligibility percentage, are employed at a connection level to present the degree of the length of the total completion time. We devise a measurement based call admission control scheme that provides multiple QoSs for various mobile users which have different requirements of stretch ratios, eligibility percentages, and bandwidths. Extensive simulation results show that the measurement based call admission control scheme not only provides various satisfactory QoSs for mobile users but also produces high throughput. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Effective support of real‐time multimedia applications in wireless access networks, viz. cellular networks and wireless LANs, requires a dynamic bandwidth adaptation framework where the bandwidth of an ongoing call is continuously monitored and adjusted. Since bandwidth is a scarce resource in wireless networking, it needs to be carefully allocated amidst competing connections with different Quality of Service (QoS) requirements. In this paper, we propose a new framework called QoS‐adaptive multimedia wireless access (QoS‐AMWA) for supporting heterogeneous traffic with different QoS requirements in wireless cellular networks. The QoS‐AMWA framework combines the following components: (i) a threshold‐based bandwidth allocation policy that gives priority to handoff calls over new calls and prioritizes between different classes of handoff calls by assigning a threshold to each class, (ii) an efficient threshold‐type connection admission control algorithm, and (iii) a bandwidth adaptation algorithm that dynamically adjusts the bandwidth of an ongoing multimedia call to minimize the number of calls receiving lower bandwidth than the requested. The framework can be modeled as a multi‐dimensional Markov chain, and therefore, a product‐form solution is provided. The QoS metrics—new call blocking probability (NCBP), handoff call dropping probability (HCDB), and degradation probability (DP)—are derived. The analytical results are supported by simulation and show that this work improves the service quality by minimizing the handoff call dropping probability and maintaining the bandwidth utilization efficiently. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Global connectivity, low latency, and ready‐to‐use infrastructure of next generation wireless (NGW) networks provide a platform for machine‐to‐machine (M2M) communications on a large scale. However, M2M communications over NGW networks pose significant challenges because of different data rates, diverse applications, and a large number of connections. In this paper, we address M2M challenges over NGW networks, and in particular, we focus on random access overload issue and diverse quality‐of‐service (QoS) requirements to enable M2M communications in the context of NGW networks. To enable massive M2M access while QoS guarantees, we propose group‐based M2M communications on the basis of identical transmission protocols and QoS requirements. Furthermore, to guarantee low energy consumption for M2M devices in the same group, we propose a decentralized group‐head selection scheme. In addition, a solution is proposed by using an effective capacity concept to provide QoS guarantees for M2M devices with a strict time constraint. A new random access approach based on different lengths super orthogonal codes is proposed to ease massive random access challenges with provisioning diverse QoS requirements of M2M communications in heterogeneous NGW networks.  相似文献   

8.
In this paper, we propose an urgency‐ and efficiencybased wireless packet scheduling (UEPS) algorithm that is able to schedule real‐time (RT) and non‐real‐time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time‐utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality‐of‐service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modifiedlargest weighted delay first (M‐LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.  相似文献   

9.
To support Quality of service (QoS)‐sensitive applications like real‐time video streaming in IEEE 802.11 networks, a MAC layer extension for QoS, IEEE 802.11e, has been recently ratified as a standard. This MAC layer solution, however, addresses only the issue of prioritized access to the wireless medium and leaves such issues as QoS guarantee and admission control to the traffic control systems at the higher layers. This paper presents an IP‐layer traffic control system for IEEE 802.11 networks based on available bandwidth estimation. We build an analytical model for estimating the available bandwidth by extending an existing throughput computation model, and implement a traffic control system that provides QoS guarantees and admission control by utilizing the estimated available bandwidth information. We have conducted extensive performance evaluation of the proposed scheme via both simulations and measurements in the real test‐bed. The experiment results show that our estimation model and traffic control system work accurately and effectively in various network load conditions without IEEE 802.11e. The presence of IEEE 802.11e will allow even more efficient QoS provision, as the proposed scheme and the MAC layer QoS support will complement each other. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Supporting QoS over multihop wireless mesh networks is difficult because end‐to‐end delay increases quickly with the increasing number of hops. This paper introduces a novel multichannel time‐division multiple‐access media access control (McTMAC) protocol that can help to efficiently reduce delay over multihop networks. Performance evaluation results demonstrate that McTMAC outperforms existing alternative protocols. The max‐delay can be reduced by as much as 60% by using McTMAC.  相似文献   

11.
A call admission control framework for voice over WLANs   总被引:1,自引:0,他引:1  
In this article a call admission control framework is presented for voice over wireless local area networks (WLANs). The framework, called WLAN voice manager, manages admission control for voice over IP (VoIP) calls with WLANs as the access networks. WLAN voice manager interacts with WLAN medium access control (MAC) layer protocols, soft-switches (VoIP call agents), routers, and other network devices to perform end-to-end (ETE) quality of service (QoS) provisioning and control for VoIP calls originated from WLANs. By implementing the proposed WLAN voice manager in the WLAN access network, a two-level ETE VoIP QoS control mechanism can be achieved: level 1 QoS for voice traffic over WLAN medium access and level 2 QoS for ETE VoIP services in the networks with WLANs as the local access. The implementation challenges of this framework are discussed for both level 1 and level 2. Possible solutions to the implementation issues are proposed and other remaining open issues are also addressed.  相似文献   

12.
Wireless mesh networks (WMNs) as community‐ and city‐wide type networks are required to extend their capability to offer real‐time multimedia services. While technologies exist to support quality of service (QoS) at node level, we propose here a network‐wide multi‐step solution to manage and offer QoS across a WMN. From a provider perspective, the provisioning and fulfillment of QoS‐based services fall under the realms of service management, network and traffic engineering functions. We describe the relevant functions required to design, implement and operate a WMN for providing a qualitative QoS to end‐users. Our proposed solution considers network planning aspects, including node placement, node clustering and frequency assignments, route discovery between ingress–egress points and appropriate QoS provisioning across the network. Route‐level QoS provisioning is defined as the process of allocating resources to the nodes along the identified routes to meet a priori known aggregated traffic demands in order to satisfy the QoS requirements for different types of application. Simulation and experimental tests are conducted to validate the correct behavior of processes/algorithms and to access the solution in achieving QoS for aggregate user traffic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
首先,简要回顾了无线Mesh网络的基本概况,分析了在无线Mesh网络中提供QoS保障的必要性和重要意义。然后,系统地介绍了无线Mesh网络的物理层、MAC层和路由层QoS保障技术以及跨层QoS设计技术的国内外研究现状,对其进行了细致而科学的分类。最后,给出了它们的研究难点和研究方向。  相似文献   

14.
The next‐generation packet‐based wireless cellular network will provide real‐time services for delay‐sensitive applications. To make the next‐generation cellular network successful, it is critical that the network utilizes the resource efficiently while satisfying quality of service (QoS) requirements of real‐time users. In this paper, we consider the problem of power control and dynamic channel allocation for the downlink of a multi‐channel, multi‐user wireless cellular network. We assume that the transmitter (the base‐station) has the perfect knowledge of the channel gain. At each transmission slot, a scheduler allots the transmission power and channel access for all the users based on the instantaneous channel gains and QoS requirements of users. We propose three schemes for power control and dynamic channel allocation, which utilize multi‐user diversity and frequency diversity. Our results show that compared to the benchmark scheme, which does not utilize multi‐user diversity and power control, our proposed schemes substantially reduce the resource usage while explicitly guaranteeing the users' QoS requirements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
‘Anytime, anywhere’ communication, information access and processing are much cherished in modern societies because of their ability to bring flexibility, freedom and increased efficiency to individuals and organizations. Wireless communications, by providing ubiquitous and tetherless network connectivity to mobile users, are therefore bound to play a major role in the advancement of our society. Although initial proposals and implementations of wireless communications are generally focused on near‐term voice and electronic messaging applications, it is recognized that future wireless communications will have to evolve towards supporting a wider range of applications, including voice, video, data, images and connections to wired networks. This implies that future wireless networks must provide quality‐of‐service (QoS) guarantees to various multimedia applications in a wireless environment. Typical traffic in multimedia applications can be classified as either Constant‐Bit‐Rate (CBR) traffic or Variable‐Bit‐Rate (VBR) traffic. In particular, scheduling the transmission of VBR multimedia traffic streams in a wireless environment is very challenging and is still an open problem. In general, there are two ways to guarantee the QoS of VBR multimedia streams, either deterministically or statistically. In particular, most connection admission control (CAC) algorithms and medium access control (MAC) protocols that have been proposed for multimedia wireless networks only provide statistical, or soft, QoS guarantees. In this paper, we consider deterministic QoS guarantees in multimedia wireless networks. We propose a method for constructing a packet‐dropping mechanism that is based on a mathematical framework that determines how many packets can be dropped while the required QoS can still be preserved. This is achieved by employing: (1) An accurate traffic characterization of the VBR multimedia traffic streams; (2) A traffic regulator that can provide bounded packet loss and (3) A traffic scheduler that can provide bounded packet delay. The combination of traffic characterization, regulation and scheduling can provide bounded loss and delay deterministically. This is a distinction from traditional deterministic QoS schemes in which a 0% packet loss are always assumed with deterministically bounding the delay. We performed a set of performance evaluation experiments. The results will demonstrate that our proposed QoS guarantee schemes can significantly support more connections than a system, which does not allow any loss, at the same required QoS. Moreover, from our evaluation experiments, we found that the proposed algorithms are able to out‐perform scheduling algorithms adopted in state‐of‐the‐art wireless MAC protocols, for example Mobile Access Scheme Based on Contention and Reservation for ATM (MASCARA) when the worst‐case traffic is being considered. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Recent advances in microelectronics have encouraged the implementation of a wireless sensor network (WSN) in intelligent monitoring systems (IMSs). The IMS for time‐critical applications requires timely and reliable data delivery without sacrificing the energy efficiency of the network. This paper proposes FPS‐MAC, a fuzzy priority scheduling‐based medium access control protocol, designed for event critical traffic in hierarchical WSN. The FPS‐MAC allows time‐critical event traffic to opportunistically steal the data slots allocated for periodic data traffic in event‐based situations. Additionally, a fuzzy logic‐based slot scheduling mechanism is introduced to provide guaranteed and timely medium access to emergency traffic load and ensures the quality‐of‐service (QoS) requirements of IMSs. Both analytical and simulation results for data throughput, energy consumption, and transmission delay of FPS‐MAC, TLHA, E‐BMA, and BMA‐RR have been analyzed to demonstrate the superiority of the proposed FPS‐MAC protocol.  相似文献   

17.
Multi‐media support is an important feature of third generation (3G) wireless communication systems, and Quality of Service (QoS) is a crucial issue, as in any other networking environment. In this paper, the QoS issues in the wireless last‐mile is investigated for 3G systems based on Wideband‐Code division multiple access (W‐CDMA). Supporting multiple rates in the CDMA environment introduces the power assignment problem, which is coupled with the bandwidth and error QoS parameters. Also, multi‐media traffic flows should be classified and serviced in such a way to provision delay guarantees. In this paper, a new framework, namely dynamic resource scheduling (DRS), is described and extensively studied. In order to serve multi‐media services with different requirements, a family of nine algorithms has been developed within the DRS framework. These algorithms can be categorized with respect to single or prioritized queuing architectures, fixed or variable rate bandwidth and power allocation, and variable spreading gain or multi‐code spreading strategies. The paper presents the performance of the DRS algorithms in comparison with each other and with conventional scheduled‐CDMA (S‐CDMA) and proposed schemes in the W‐CDMA standard. The performance for error and throughput QoS provisioning and power control dynamics are explored; advantages, disadvantages and limitations of the algorithms are discussed. The DRS framework is concluded to be a promising QoS architecture, with a simple, flexible, scalable structure that can be configured according to a given traffic scenario. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, an orthogonal frequency division multiple access (OFDMA)‐based minimum end‐to‐end delay (MED) distributed routing scheme for mobile backhaul wireless mesh networks is proposed. The proposed scheme selects routing paths based on OFDMA subcarrier synchronization control, subcarrier availability, and delay. In the proposed scheme, OFDMA is used to transmit frames between mesh routers using type‐I hybrid automatic repeat request over multipath Rayleigh fading channels. Compared with other distributed routing algorithms, such as most forward within radius R, farthest neighbor routing, nearest neighbor routing, and nearest with forwarding progress, simulation results show that the proposed MED routing can reduce end‐to‐end delay and support highly reliable routing using only local information of neighbor nodes.  相似文献   

19.
We consider the problem of optimal power control for quality‐of‐service‐assured wireless communication. The quality of service (QoS) measures of our consideration are a triplet of data rate, delay, and delay bound violation probability (DBVP). Our target is to develop power control laws that can provide delay guarantees for real‐time applications over wireless networks. The power control laws that aim at optimizing certain physical‐layer performance measures, usually adapt the transmission power based on the channel gain; we call these “channel‐gain‐based” (CGB) power control (PC). In this paper, we show that CGB‐PC laws achieve poor link‐layer delay performance. To improve the performance, we propose a novel scheme called hierarchical queue‐length‐aware (HQLA) power control. The key idea is to combine the best features of the two PC laws, i.e., a given CGB‐PC law and the clear‐queue (CQ) PC law; here, the CQ‐PC is defined as a PC law that uses a transmission power just enough to empty the queue at the link layer. We analyze our proposed HQLA‐PC scheme by the matrix‐geometric method. The analysis agrees well with the simulation results. More importantly, our results show that the proposed HQLA power control scheme is superior to the corresponding CGB‐PC in both average power consumption and effective capacity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Advances in real‐time system and wireless communication have led to the deployment of body area sensor networks (BASNs) for effective real‐time healthcare applications. Real‐time systems in BASNs tend increasingly to be probabilistic and mixed critical to meet stringent requirements on space, weight, and power consumption. Response‐time analysis is an important and challenging task for BASNs to provide some critical services. In this paper, we propose a request‐based compositional probabilistic response‐time analysis framework for probabilistic real‐time task models with fixed‐priority preemptive scheduling in BASNs. In this method, each probabilistic real‐time task is abstracted as a probabilistic request function. Rough response‐time distribution is computed first based on the cumulative request distribution and then exact response‐time distribution is obtained by refinement based on the request increase distribution. Our strategy can effectively improve performance by reducing repetitive computational overhead for the probabilistic response‐time analysis of all tasks in the system. Our evaluation demonstrates that our proposed method significantly outperforms the existing probabilistic response‐time analysis algorithm in terms of analysis duration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号