首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on the effect of aluminum contents and of its particle size on detonation characteristics of RDX‐based compositions containing 15–60% aluminum was carried out. Measurements of detonation velocity for different charge diameters and confinements were performed. To measure the shock curvature of the detonation wave, X‐ray photography was applied. Unconfined charges and charges confined with a water envelope were tested. The radius of the detonation front curvature was determined. The cylinder test results were the basis for determination of the acceleration ability and energetic characteristics of the detonation products of the mixtures. The Gurney energy describing the acceleration ability was found. The detonation energy of the mixtures tested was also estimated from the cylinder test data.  相似文献   

2.
Research on the effect of aluminium contents and its particle size on free field and confined explosions characteristics of RDX‐based compositions containing 15–60% aluminium was carried out. Parameters of blast waves produced by charges of the investigated explosives detonating in an open space were measured by the use of piezoelectric gauges. Simultaneously, photodiode set‐ups were used to measure light output of the detonating charges. Quasi‐static pressure measurements were conducted in steel chambers of 0.15 and 7 m3 volume filled with air. Moreover, the heat of detonation was measured with a calorimetric set in a 5.6 dm3 bomb filled with argon. The results of QSP and detonation heat measurements were compared with those obtained from thermochemical calculations.  相似文献   

3.
In an attempt to further contribute to the characterization of explosive compositions, small scale Floret tests were performed using four RDX grades, differing in product quality. A Floret test provides a measure – by indentation of a copper block – of detonation spreading or the initiability and shock wave divergence and is applied in particular to explosives used in initiation trains. Both as‐received RDX and PBXs (based on the AFX‐757 composition, a hard target penetrator explosive) containing these RDX grades were tested in the Floret test set‐up. It was found that the Floret test method, when applied to granular, as‐received RDX, was not able to discriminate between the overall RDX product qualities on the basis of the resulting volume of the indentation in the copper block. For the Floret test data of the PBX samples, a division into two parts, where one of the RDX lots shows a lower dent volume compared to the other RDX lots tested. Based on the results presented in this paper with granular RDX and a PBX composition and earlier results with a different type of PBX (based on PBXN‐109, an insensitive high explosive used in a wide range of munitions), the Floret test could be developed into a screening test for shock sensitivity and product quality, without the need for complex and large volume casting of specific PBX compositions.  相似文献   

4.
Reduced Sensitivity RDX (RS‐RDX) has received a lot of attention and interest from the explosive community in the recent years. There are several producers of RS‐RDX, most of them using a direct nitration (Woolwich process) for the RDX synthesis, while Chemring Nobel uses the Bachmann process. The processes for obtaining the RS properties probably differ between the various producers. Chemring Nobel has also developed an HMX quality that shows Reduced Sensitivity (RS‐HMX) of different particle size distributions. The shock sensitivity is at the same level as for RS‐RDX in comparable compositions. Reduced shock sensitivity has been obtained for RS‐RDX and Reduced Sensitivity (RS‐HMX) in both pressable and cast‐cured compositions. By using a pressable composition, it is possible to get the results from a BICT gap test faster than from a cast‐cured composition that has to go through a curing process. Chemring Nobel in cooperation with FFI have performed an extensive accelerated ageing testing of RS‐RDX produced by the Bachmann process. The samples have been aged at 60 and 70 °C and the shock sensitivity tested by two different gap tests. The results demonstrate that the Chemring Nobel RS‐RDX retain the insensitivity towards shock during ageing and show no degradation at all. Accelerated ageing testing of RS‐HMX has also been performed and shows no degradation in the shock sensitivity.  相似文献   

5.
Hydroxyl‐terminated polybutadiene (HTPB) based sheet explosives incorporating insensitive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) as a part replacement of cyclotrimethylene trinitramine (RDX) have been prepared during this work. The effect of incorporation of TATB on physical, thermal, and sensitivity behavior as well as initiation by small and high caliber shaped charges has been determined. Composition containing 85% dioctyl phthalate (DOP) coated RDX and 15% HTPB binder was taken as control. The incorporation of 10–20% TATB at the cost of RDX led to a remarkable increase in density (1.43→1.49 g cm−3) and tensile strength (10→15 kg cm−2) compared to the control composition RDX/HTPB(85/15). RDX/TATB/HTPB based compositions were found less vulnerable to shock stimuli. Shock sensitivity was found to be of the order of 20.0–29.2 GPa as against 18.0 GPa for control composition whereas their energetics in terms of velocity of detonation (VOD) were altered marginally. Differential scanning calorimeter (DSC) and thermogravimetry (TG) studies brought out that compositions undergo major decomposition in the temperature region of 170–240 °C.  相似文献   

6.
In order to characterize the initial phase of the divergent detonation wave in PBX, a hemispheric explosive sample was initiated by a long cylindrical charge of the same explosive. The tested PBX is composed of 85 wt% of RDX and 15 wt% of binder based on HTPB. This PBX‐RDX presents an effective density of 1.57 g/cm3, and a detonation velocity of 7.90 mm/μs.  相似文献   

7.
1,1‐Diamino‐2,2‐dinitroethene (DADNE, FOX‐7) is considered to be an explosive combining comparatively high performance and low sensitivity. In the present study, FOX‐7 has been evaluated as a possible replacement of RDX in TNT‐based melt‐cast compositions. A composition containing FOX‐7, TNT, Al and wax, and a method of preparing it were proposed. Its sensitivity to impact, friction, shock wave, jet impact, fast heating, and its thermal stability were tested. Some detonation parameters like the detonation pressure, velocity and heat were measured. Moreover, the Gurney velocity, the so‐called effective exponent of the expansion isentrope and the JWL equation of state of the detonation products were determined from the results of a cylinder test. The detonation characteristics were compared with that obtained for cast TNT.  相似文献   

8.
Investigation of detonation parameters, blast wave characteristics and quasi‐static pressures (QSPs) for the mixtures of nitromethane and particles of an aluminium and magnesium (Al3Mg4) alloy was carried out. The mixtures of gelled nitromethane containing 15–60 wt.‐% Al Mg alloy were tested. Detonation velocity and Gurney energy were determined. Parameters of blast waves produced by charges of the investigated explosives were measured. QSP measurements were conducted in a steel chamber of 0.15 m3 volume filled with air. Thermochemical and gasdynamical calculations were also performed. The degree of combustion of the metallic addition with the gaseous products during detonation and expansion is discussed.  相似文献   

9.
EAK基熔铸分子间炸药的能量和撞击感度   总被引:9,自引:0,他引:9  
通过水下爆炸试验研究了RDX和HMX对EAK基熔铸分子间炸药水下能量的影响。结果表明,RDX和HMX对EAK基混合炸药起到明显的增能作用,但对含铝和非含铝体系有不同的作用效果。爆速和撞击感度测定表明,EAK—RDX混合炸药爆轰的理想化程度和稳定性及撞击感度随RDX含量的增加而增加。从能量和撞击感度两个方面综合考虑,RDX的较佳加入量应为20%~30%。  相似文献   

10.
At present, cis‐1,3,4,6‐tetranitro‐octahydroimidazo‐[4,5‐d]imidazole (bicyclo‐HMX, BCHMX) and ε‐2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (ε‐HNIW, CL‐20) are a topic of interest from the attractive and the potentially attainable nitramines. They were chosen to be studied in comparison with 1,3,5‐trinitro‐1,3,5‐triazinane (RDX) and β‐1,3,5,7‐tetranitro‐1,3,5‐tetrazocane (β‐HMX). Marginal attention is devoted also to 4,8,10,12‐tetranitro‐2,6‐dioxa‐tetraazawurtzitane (Aurora 5). BCHMX, ε‐HNIW, RDX, and HMX were studied as plastic bonded explosives (PBXs) with elastic properties based on Composition C4 and Semtex 10 matrices. Also they were studied as a highly pressed PBXs based on the Viton A binder. The detonation parameters and sensitivity aspects of these nitramines and their corresponding PBXs were determined. Relative explosive strengths (RS) of these compositions are mentioned with mutual relationships between the measured RS values and some detonation parameters. These relationships indicate a possibility of changes in detonation chemistry of these mixtures filled mainly by HNIW. A sensitivity of RS‐CL20 (HNIW with reduced sensitivity) is reported and the new findings in the friction sensitivity are discussed.  相似文献   

11.
It has been shown that nano‐sized particles of secondary explosives are less sensitive to impact and can alter the energetic performance of a propellant or explosive. In this work the Rapid Expansion of a Supercritical Solution into an Aqueous Solution (RESS‐AS) process was used to produce nano‐sized RDX (cyclo‐1,3,5‐trimethylene‐2,4,6‐trinitramine) particles. When a saturated supercritical carbon dioxide/RDX solution was expanded into neat water, RDX particles produced from the RESS‐AS process agglomerated quickly and coarsened through Ostwald ripening. However, if the pH level of the suspension was changed to 7, particles were metastably dispersed with a diameter of 30 nm. When the supercritical solution was expanded into air under the same pre‐expansion conditions using the similar RESS process, RDX particles were agglomerated and had an average size of approximately 100 nm. Another advantage of using a liquid receiving solution is the possibility for coating energetic particles with a thin layer of polymer. Dispersed particles were formed by coating the RDX particles with the water soluble polymers polyvinylpyrrolidone (PVP) or polyethylenimine (PEI) in the RESS‐AS process. Both PVP and PEI were used because they have an affinity to the RDX surface. Small and well‐dispersed particles were created for both cases with both PVP and PEI‐coated RDX particles shown to be stable for a year afterward. Several benefits are expected from these small polymer coated RDX particles such as decreased sensitivity, controlled reactivity, and enhanced compatibility with other binders for fabrication of bulk‐sized propellants and/or explosives.  相似文献   

12.
FOX-7和RDX基含铝炸药的冲击起爆特性   总被引:1,自引:0,他引:1  
为研究FOX-7和RDX基含铝炸药的冲击起爆特性,对其进行了冲击波感度试验和冲击起爆试验,结合冲击波在铝隔板中的衰减特性,确定了FOX-7和RDX基含铝炸药的临界隔板值和临界起爆压力,并通过锰铜压阻传感器记录了起爆至稳定爆轰过程压力历程的变化。结果表明,以Φ40mm×50mm的JH-14为主发装药时,FOX-7和RDX基含铝炸药临界隔板值分别为37.51和34.51mm,对应的临界起爆压力为10.91和11.94GPa;起爆压力为11.58GPa时,FOX-7炸药的到爆轰距离为25.49~30.46mm,稳定爆轰后的爆轰压力为27.68GPa,爆轰速度为8 063m/s;起爆压力为14.18GPa时,RDX基含铝炸药的到爆轰距离为17.27~23.53mm,稳定爆轰后的爆轰压力为17.16GPa,爆轰速度为6 261m/s。  相似文献   

13.
为了研究老化对炸药性能的影响,对自然贮存的3种熔铸炸药TNT/RDX、TNT/RDX/Al和 TNT/HMX/Al进行了加速老化试验。通过扫描电镜、真空安定性试验研究了老化前后3种炸药的微观形貌和安全性能,并测试了老化前后3种炸药的感度和爆速。结果表明,老化后炸药颜色变深,体积膨胀,质量变轻。样品的放气量小于2 mL/g ,热感度变化也较小。机械感度的变化与炸药组分和老化方式有关。TNT/RDX的爆速随着贮存时间的增加而降低,与整体加速老化情况一致,TNT/RDX/Al和 TNT/HMX/Al的爆热随贮存时间的增加变化趋势相反,说明两者老化机理可能不同。  相似文献   

14.
A series of plastic bonded explosives (PBXs) based on Viton A and Fluorel binders were prepared using four nitramines, namely RDX (1,3,5‐trinitro‐1,3,5‐triazinane), β‐HMX (β‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane), BCHMX (cis‐1,3,4,6‐tetranitro‐octahydroimidazo‐[4,5‐d]imidazole), and ε‐HNIW (ε‐2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane). The detonation velocities, D, were determined. Detonation parameters were also calculated by means of modified Kamlet & Jacobs method, CHEETAH and EXPLO5 codes. In accordance with our expectations BCHMX based PBXs performed better than RDX based ones. The Urizar coefficient for Fuorel binder was also calculated.  相似文献   

15.
Insensitive high explosives are being used in military munitions to counteract unintended detonations during storage and transportation. These formulations contain compounds such as 2,4‐dinitroanisole (DNAN) and 3‐nitro‐1,2,4‐triazol‐5‐one (NTO), which are less sensitive to shock and heat than conventional explosives. We conducted a series of four tests on snow‐covered ice utilizing 60‐mm mortar cartridges filled with 358 g of PAX‐21, a mixture of RDX, DNAN, and ammonium perchlorate. Rounds were detonated high‐ and low‐order using a fuze simulator to initiate detonation. Blow‐in‐place (BIP) operations were conducted on fuzed rounds using an external donor charge or a shaped‐charge initiator. Results indicate that 0.001 % of the original mass of RDX and DNAN were deposited during high‐order detonations, but up to 28 % of the perchlorate remained. For the donor block BIPs, 1 % of the RDX and DNAN remained. Residues masses for these operations were significantly higher than for conventional munitions. Low‐order detonations deposited 10–15 % of their original explosive filler in friable chunks up to 5.2 g in mass. Shaped‐charge BIPs scattered 15 % of the filler and produced chunks up to 15 g. Ammonium perchlorate residue masses were extremely high because of the presence of large AP crystals, up to 400 μm in the recovered particles.  相似文献   

16.
Successful realization of detonation‐induced h‐BN→c‐BN phase transition requires that a hydrolysis of BN by water from the detonation products is suppressed. For this two kinds of experiments for synthesis of c‐BN were attempted: using benzo‐trifuroxan (with no water in products) as an explosive, in 80% yield; and using the cast 50% TNT+50% RDX charges containing 5–25 wt.‐% of h‐BN powder in order to expend water from the detonation products by a part of BN, and to realize the phase transition in the rest, in 10% yield.  相似文献   

17.
This paper reports the characteristics of the explosive TH‐5, recycled (recovered) trinitrotoluene (TNT) with max. 5 wt‐% of hexogen (RDX). The explosive TH‐5 was obtained by delaboration of warheads and melting of explosive charges based on TNT and RDX and by separation (extraction) of high explosive components. The thermal characteristics of pure (virgin) TNT and RDX, and recycled explosive TH‐5 are determined by differential scanning calorimetry. The possibility of processing TH‐5 by pressing and casting is also examined. The comparative analysis of sensitivity of TH‐5 and TNT to friction is determined, as well as compressibility of explosives, and the detonation velocity of pressed and cast charges. Based on the analysis of experimental results, the defense standard requirements for the quality of TH‐5 are defined and possibility of practical application of explosive TH‐5 was estimated.  相似文献   

18.
The detonation products of high explosives are dependent on pressure and also on the confinement under which the detonation reaction proceeds. To determine the detonation products of less-sensitive high explosives, such as TNT/nitroguanidine (NQ) and PBX charges with polybutadiene (PB) binder containing RDX together with or without aluminium (Al), experiments have been performed in a stainless steel chamber with a volume of 1.5 m3. These experiments were done under different ambient argon pressures up to 0.3 MPa. Gaseous reaction products were analysed by mass spectrometry and chemiluminescence analysis. Solid reaction products were analyzed measuring the carbon residue or the unreacted aluminium. It was found that the detonation products were highly dependent on the ambient pressure of argon. The most important changes of the reaction products and therefore also of the energy output were found between vacuum and atmospheric pressure of argon. With increasing pressure, H2 and CO decrease and CO2, H2O, Cs, NH3, HCN and CH4 increase together with the reaction enthalpy. By analysing the physical structure of the carbon residue, diamonds have been observed between 4 nm and 7 nm in diameter.  相似文献   

19.
RDX is preferred as explosive in munitions due to its balance of power and sensitivity that is known to be dependent on its particle size and size distribution. In this study, we prepared nano‐sized RDX in a silica xerogel matrix using a sol‐gel method and investigated its sensitivity for explosive properties. The presence of RDX in composite xerogel was confirmed by TG‐DSC and FTIR techniques. Microstructure and porosity were characterized by transmission electron microscopy (TEM), small angle X‐ray scattering, and N2‐physisorption techniques. TEM results showed that the size of RDX particles in the RDX‐silica composites is in the range of 10–30 nm. The sensitivity to impact and friction was found to be higher for the composites compared to raw RDX. It was also found to be significantly dependent on the acetone/TMOS ratio used in the preparation.  相似文献   

20.
A series of W/O emulsion explosives containing 30–50 wt‐% of the demilitarized mixture RDX/TNT (Composition B 50/50) was prepared. Detonation velocities and relative explosive strengths of these mixtures were determined and their detonation characteristics were calculated according to the EU standard methods for commercial explosives. Thermal reactivities of the most reactive components of these W/O mixtures were examined by means of differential thermal analysis and outputs were analyzed according to the Kissinger method. The reactivities, expressed as the EaR−1 slopes of the Kissinger relationship, correlate with the squares of the detonation velocities of the corresponding explosive mixtures. It was found that fortification of the W/O emulsions by the demilitarized mixture RDX/TNT allows modification of detonation velocities of the resulting emulsion explosives within relatively broad limits. However, the effect of this admixture on the relative explosive strength is not well defined. Nevertheless, fortification in this sense can give rock‐blasting explosives with a performance on the level of industrial powdered amatols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号