首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyses and compares the average bit error rate (BER) of different multiuser detectors (MUD) in the uplink of a multicarrier code- division multiple access (MC-CDMA) system. In particular, maximum likelihood, zero-forcing, minimum mean-square error and interference cancellation-based multiuser detectors have been analysed for the special case of uncorrelated subcarriers. The derived BER expressions are based upon previous results on diversity combining and also on recent findings on multiple input multiple output (MIMO) architectures. The subcarrier correlation is considered in the context of physical parameters currently under discussion for future wireless systems to give an indication up to what extent the assumption of uncorrelated subcarrier fading is plausible.  相似文献   

2.
In this paper, we consider the multiple-input multiple-output (MIMO) wireless systems employing maximal ratio combining (MRC) in the absence and presence of multiuser diversity. First, using the well-known moment generating function-based analysis approach, we derive the error performance of the MIMO MRC systems without multiuser diversity over spatially correlated fading channels. Second, we present the average capacity of MIMO MRC systems with multiuser diversity. Numerical results demonstrate the accuracy of our analytical expressions.  相似文献   

3.
In this paper, we consider multiple‐input multiple‐output (MIMO) multi‐tone code division multiple access (MT‐CDMA) uplink transmission over multipath fading channels. The zero‐forcing vertical Bell Laboratories layered space‐time architecture (ZF V‐BLAST) algorithm and maximum ratio combining scheme are applied at the receiver. The average bit error rate (BER) expression is derived provided that the number of receive antennas is not less than that of transmit antennas. The BER expression is verified by simulations. Numerical results show that the numbers of transmit and receive antennas have significant effects on the BER performance of the considered system. Spatial and path diversity show different capabilities to improve the BER performance. The MIMO MT‐CDMA system based on the ZF V‐BLAST algorithm is capable of achieving a better BER performance and a higher capacity than the conventional MT‐CDMA system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Multiuser diversity (MUD) cooperative wireless networks combine the features of the MIMO systems without confronting the physical layer constraints by providing multiple copies of the transmitted signal from the source to the destination with the help of the relay node. Cooperative wireless networks have attracted the full attention in the last few years and are implemented widely in many wireless communication systems to adapt for the fading impairments, provide higher data rates, and improve the performance of the wireless communication systems. In this paper, we present an informative study for the reason of evaluating the performance of the MUD in the multiuser two‐hop cooperative multi‐relay networks using maximal ratio combining. Furthermore, we derive tight closed‐form expressions of outage probability and symbol error probability for the amplify‐and‐forward and fixed decode‐and‐forward protocols with the MUD. Additionally, we conduct a simulation study to show to what extent our analytical and simulation results agree with each other. It is worthy to mention that our analytical and simulation results agree fairly with each other under high average signal‐to‐noise ratio, whereas they show that our proposed system with multiple relays provides significant improvements over those previously proposed systems having only one relay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Space–time coded multiple‐input multiple‐output (MIMO) technology is an important technique that improves the performance of wireless communication systems significantly without consuming bandwidth resource. This paper first discusses the characteristics and limitations of traditional symbol‐level space–time coding schemes, which work largely on the basis of an assumption that signals are sent to a block‐fading channel. Therefore, the symbol‐level space–time coding schemes rely on symbol‐level signal processing. Taking advantage of orthogonal complementary codes, we propose a novel MIMO scheme, in this paper, based on chip‐level space–time coding that is different from the traditional symbol‐level space–time coding. With the help of space–time–frequency complementary coding and multicarrier modem, the proposed scheme is able to achieve multipath interference‐free and multiuser interference‐free communications with simple a correlator detector. The proposed chip‐level space–time coded MIMO works well even in a fast fading channel in addition to its flexibility to achieve diversity and multiplexing gains simultaneously in varying channel environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a performance analysis of dynamic channel allocation (DCA) based on the greedy approach (GA) for orthogonal frequency‐division multiple access downlink systems over Rayleigh fading channels. The GA‐based DCA achieves its performance improvement using multiuser diversity. We analyze the statistics of the number of allocable users that represents the multiuser diversity order at each allocation process. The derived statistics are then used to analyze the performance of GA‐based DCA. The analysis results show that the number of subcarriers allocated to each user must be equal to achieve the maximum system performance based on outage probability and data throughput. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple‐input multiple‐output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum‐rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio‐temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.  相似文献   

8.
A novel analytical representation of bit error rate (BER) performance of an impulse‐radio ultra‐wideband energy detector on–off keying system using cooperative dual‐hop amplify and forward relay technology, with various diversity combining schemes over IEEE 802.15.4a environment is presented in this paper. In particular, the approximate expressions based on energy detection principle are derived for various diversity combining cases, namely linear optimal combining, linear combining, and selective combining. Simulation results depict an improvement in BER performance, with increase in number of relay paths (L ) and decrease in number of frames per symbol (N f ). Furthermore, the BER performance of the impulse‐radio ultra‐wideband energy detector on–off keying system improves substantially using dual‐hop cooperative amplify and forward scheme, compared with that of non‐cooperative or single link scenario. Among the diversity combining schemes, linear optimal diversity combining performs better when compared with linear diversity combining and selective combining. The analytical BER expressions are validated with the simulation results, which confirm the accuracy and precision in approximation used in the investigation of BER. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we derive the upper bound of bit‐error rate (BER) performance and diversity gain for a decode‐and‐forward (DF) cooperative system. Either maximal‐ratio combining (MRC) or cooperative MRC (C‐MRC) is employed at the receiver in the presence of independent, non‐identical Nakagami‐m fading. Both analytical and simulation results show that C‐MRC takes advantage of spatial diversity more efficiently and thus achieves the same or better performance and diversity order as compared to MRC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
On the basis of a mixture of the selection combining and switch‐and‐stay combining schemes, the enhanced switch combining (ESC) scheme is proposed for antenna diversity over multiple correlated Nakagami‐m fading channels, where a switch window with upper and lower switch thresholds are used. Compared with the existing select‐and‐stay combining or switch with post‐examining, the ESC scheme reduces simultaneous multiantenna observations and hence saves processing time and energy from multibranch observations, while achieving matched receiver performance. Thus, ESC also has better performance than switch‐and‐examine combining (SEC). To assess the reduction of simultaneous observations, a dual‐observation rate is defined. Moreover, the ESC unifies some well‐known switch‐based combining schemes (for example selection combining, switch‐and‐stay combining, or SEC) in the sense that, by adjusting switch thresholds, these combining schemes become different special cases of ESC. The CDF, PDF, and moment generating function of the combined signal‐to‐noise ratio for ESC are derived for general fading channels. Then, the outage probability and the average BER of different binary modulations over correlated Nakagami‐m fading channels are evaluated. Numerical results from analysis and simulation are presented to demonstrate ESC performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The demand for higher data rate has spurred the adoption of multiple‐input multiple‐output (MIMO) transmission techniques in IEEE 802.11 products. MIMO techniques provide an additional spatial dimension that can significantly increase the channel capacity. A number of multiuser MIMO system have been proposed, where the multiple antenna at the physical layer are employed for multiuser access, allowing multiple users to share the same bandwidth. As these MIMO physical layer technologies further evolve, the usable bandwidth per application increases; hence, the average service time per application decreases. However, in the IEEE 802.11 distributed coordination function‐based systems, a considerable amount of bandwidth is wasted during the medium access and coordination process. Therefore, as the usable bandwidth is enhanced using MIMO technology, the bandwidth wastage of medium access and coordination becomes a significant performance bottleneck. Hence, there is a fundamental need for bandwidth sharing schemes at the medium access control (MAC) layer where multiple connections can concurrently use the increased bandwidth provided by the physical layer MIMO technologies. In this paper, we propose the MIMO‐aware rate splitting (MRS) MAC protocol and examine its behavior under different scenarios. MRS is a distributed MAC protocol where nodes locally cooperate with one another to share bandwidth via splitting the spatial channels of MIMO systems. Simulation results of MRS protocol are obtained and compared with those of IEEE 802.11n protocol. We show that our proposed MRS scheme can significantly outperform the IEEE 802.11n in medium access delay and throughput. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
针对结合了发射与接收分集技术和空时编码技术的MIM0无线通信系统误比特率性能问题,提出了一种利用信道矩阵的最大奇异值平方的概率密度函数(pdf),来推导相干接收条件下,基于M-PAM和M-QAM调制的MIM0系统最大比合并精确误比特率显式表达式的方法。以该误比特率表达式为依据,分析了天线数目为可配置资源条件下,发射天线和接收天线的不同配置方案对系统性能的影响。通过计算机的蒙特卡洛仿真验证了理论分析结论。  相似文献   

13.
Yonghoon Choi 《ETRI Journal》2014,36(6):953-959
This paper studies the uplink resource allocation for multiple radio access (MRA) in reconfigurable radio systems, where multiple‐input and multiple‐output (MIMO) multicarrier‐code division multiple access (MC‐CDMA) and MIMO orthogonal frequency‐division multiple access (OFDMA) networks coexist. By assuming multi‐radio user equipment with network‐guided operation, the optimal resource allocation for MRA is analyzed as a cross‐layer optimization framework with and without fairness consideration to maximize the uplink sum‐rate capacity. Numerical results reveal that parallel MRA, which uses MC‐CDMA and OFDMA networks concurrently, outperforms the performance of each MC‐CDMA and OFDMA network by exploiting the multiuser selection diversity.  相似文献   

14.
By introducing a full‐rate space–time coding (STC) scheme, a synchronous CDMA (code division multiple access) system with full‐rate STC is given, and the corresponding uplink performance is investigated in Rayleigh fading channel with imperfect estimation. Considering that existing STC‐CDMA system has high decoding complexity, low‐complexity multiuser receiver schemes are developed for perfect and imperfect estimations, respectively. The schemes can make full use of the complex orthogonality of STC to reduce the high decoding complexity of the existing scheme, and have linear decoding complexity compared with the existing scheme with exponential decoding complexity. Moreover, the proposed schemes can achieve almost the same performance as the existing scheme. Compared with full‐diversity STC‐CDMA, the given full‐rate STC‐CDMA can achieve full data rate, low complexity, and partial diversity, and form efficient spatial interleaving. Thus, the concatenation of channel coding can effectively compensate for the performance loss due to partial diversity. Simulation results show that the full‐rate STC‐CDMA has lower bit error rate (BER) than full‐diversity STC‐CDMA systems under the same system throughput and concatenation of channel code. Moreover, the system BER with imperfect estimation are worse than that with perfect estimation due to the estimation error, which implies that the developed multiuser receiver schemes are valid and reasonable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Mobile‐to‐mobile (M‐to‐M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M‐to‐M multiple‐input multiple‐output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double‐correlated Rayleigh‐and‐Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three‐dimensional (3D) M‐to‐M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal‐to‐noise ratio per receive antenna in closed‐form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the xy plane, angle between the xy plane and the antenna array orientation, and degree of scattering in the xy plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems.  相似文献   

17.
This paper proposes a joint precoding and power allocation strategy to maximize the sum rate of multiuser multiple‐input multiple‐output (MIMO) relay networks. A two‐hop relay link working on amplify‐and‐forward (AF) mode is considered. Precoding and power allocation are designed jointly at the base station (BS). It is assumed that there are no direct links between the BS and users. Under individual power constraints at the BS and relay station, precoders designed based on zero forcing, minimum mean‐square error and maximum ratio transmission are derived, respectively. Optimal power allocation strategies for these precoders are given separately. To demonstrate the performance of the proposed strategies, we simulate the uncoded bit error rate performance of the underlined system. We also show the difference of the sum rate of the system with the optimal power allocation strategies and with average power transmission. The simulation results show the advantages of the proposed joint precoding and power allocation strategies as expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
For wireless multiple‐input multiple‐output (MIMO) communications systems, both channel estimation error and spatial channel correlation should be considered when designing an effective signal detection system. In this paper, we propose a new soft‐output MMSE based Vertical Bell Laboratories Layered Space‐Time (V‐BLAST) receiver for spatially‐correlated Rician fading MIMO channels. In this novel receiver, not only the channel estimation errors and channel correlation but also the residual interference cancellation errors are taken into consideration in the computation of the MMSE filter and the log‐likelihood ratio (LLR) of each coded bit. More importantly, our proposed receiver generalizes all existing soft‐output MMSE V‐BLAST receivers, in the sense that, previously proposed soft‐output MMSE V‐BLAST receivers can be derived as the reduced forms of our receiver when the above three considered factors are partially or fully simplified. Simulation results show that the proposed soft‐output MMSE V‐BLAST receiver outperforms the existing receivers with a considerable gain in terms of bit‐error‐rate (BER) performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we consider switch‐and‐stay combining (SSC) in two‐way relay systems with two amplify‐and‐forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or time‐division broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed‐form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signal‐to‐noise ratio. It is shown that SSC can achieve the full diversity order in two‐way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The dual‐branch selection‐and‐stay combining (SSTC) is analyzed for diversity reception on independent and correlated Nakagami‐m fading channels, where the conventional selection combining (SC) is employed only at the switching instance, and the receiver uses the selected branch till its signal‐to‐noise ratio (SNR) estimation is lower than a preset threshold. In this combining scheme, the receiver only needs to continuously estimate the SNR of the single selected branch. For the performance analysis of SSTC, the switching rate and the average bit error rates (BERs) of different binary coherent and non‐coherent modulations are evaluated. Numerical results based on the analysis and simulations are illustrated. According to the analysis and numerical results, the SSTC outperforms the existing switch‐and‐stay combining in the senses of the average BER and switching rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号