首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
The effect of nixtamalization on physicochemical and morphological characteristics of starch was studied. Determination of total starch, ash and amylose content, of swelling and solubility, gelatinization characteristics and morphological studies were carried out in starch isolated from native (S) and nixtamalized (NS) maize flours. Thermal analysis showed that nixtamalization produced starch annealing due to the higher gelatinization temperature obtained for NS. However, S had slightly lower enthalpy values. The swelling profile was similar for both starches, but the solubility values at the temperatures assessed were slightly higher in the NS samples. At temperatures below gelatinization, the granules showed the Maltese cross while at higher temperatures only ghost of granules were observed. The nixtamalized starch had larger granule sizes than the native starch, due to the partial swelling produced in the heating during the nixtamalization process. Larger granule sizes were also observed by image analysis, because major axis and area parameters were higher in NS samples than in S samples. The nixtamalization process produced changes in chemical, thermal and morphological characteristics, becoming important in products obtained from nixtamalized maize.  相似文献   

2.
The dry root tuber of Stephania epigaea contained 36.5% starch, indicating a good starch source. In this study, starch was isolated from S. epigaea. Its morphology, physicochemical, and functional properties were investigated and compared with potato and maize starches. S. epigaea starch had small spherical granules with centric hila and large ellipsoidal granules with eccentric hila, and granule sizes varied from 7 to 40 μm. The starch had 33.9% amylose content and B-type crystallinity. The gelatinization onset, peak, and final temperatures were 59.4, 62.3, and 66.2°C, respectively, and were lower than those of potato and maize starches, but the enthalpy (16.3 J/g) was higher than that of potato and maize starches. The peak, hot, final, and breakdown viscosities were 2227, 1623, 2149, and 594 dPa s, respectively, and were significantly higher than those of maize starch and lower than those of potato starch. S. epigaea starch was more susceptible to amylase hydrolysis and in vitro digestion than potato starch and less than maize starch. This study would be useful for the applications of starch from S. epigaea in the food and non-food industries.  相似文献   

3.
Corn starch and starches separated from different potato cultivars were acetylated to evaluate the effect of plant source on the physicochemical, morphological, thermal, rheological, textural and retrogradation properties of the starches. Corn starch showed a lower degree of acetylation than potato starches under similar experimental conditions. The degree of acetylation for different potato starches also differed significantly. Morphological examination revealed that the granules of acetylated Kufri Chandermukhi and Kufri Sindhuri starches tended to appear as fused and less smooth than native starch granules. Acetylation of corn and potato starches decreased the transition temperatures and enthalpy of gelatinization and increased swelling power and light transmittance. However, the change in these was greater in the potato starches with higher percentage of small sized granules. Acetylated starches showed higher peak G', G'' and lower tan δ than their counterpart native starches during heating. Among the starches from different cultivars, the change in the rheological parameters after acetylation differed to a significant extent. The retrogradation was observed to be negligible in the acetylated cooked starch pastes. Results implied that the change in functional properties of starches with acetylation depends on source and granule morphology of native starch.  相似文献   

4.
Mango and banana starches were isolated from unripe fruits and their morphology; thermal and pasting properties; molar mass and chain length distribution were determined. Mango starch granules were spherical or dome‐shaped and split, while banana starch had elongated granules with a lenticular shape. Amylopectin of both fruit starches had a lower molar mass than maize starch amylopectin; however, mango amylopectin had the highest gyration radius. Banana amylopectin showed the lowest percentage of short chains [degree of polymerization (DP) 6–12] and the highest level of long chains (DP ≥ 37); mango amylopectin presented the highest fraction of short chains, but the level of longest chains was intermediate between those of banana and maize amylopectins. Banana starch presented the highest average gelatinization temperature followed by mango starch and maize starch had the lowest value; a similar pattern was found for the gelatinization enthalpy. The two fruit starches had a lower pasting temperature than maize starch, but the former samples showed higher peak and final viscosities than maize starch. Structural differences identified in the fruit starches explain their physicochemical characteristics such as thermal and pasting behavior.  相似文献   

5.
Maize shows a significant genetic diversity, giving origin to a great number of varieties, hybrids, and genotypes. Recently, the pigmented corn varieties have received increased interest because of their anthocyanin contents. Although starch is the major component of the pigmented corn, only a few studies have been conducted on this constituent. The aim of this work was to evaluate the physicochemical properties and structural characteristics of starch isolated from six blue maize varieties grown in Mexico. The apparent amylose content ranged between 23.3 and 33.9%. The blue maize starches had an A‐type X‐ray diffraction pattern with similar crystallinity levels. Different gelatinization temperatures and enthalpy values were recorded, exhibiting different retrogradation tendencies (between 36.9 and 60.1%). The pasting parameters showed that the pasting temperature varied between 74.7 and 84.1°C, the maximum peak viscosity between 83.2 and 111.2 RVU units, and the setback viscosity between 26 and 38 RVU units. Structural differences were observed in the degree of branching, molar mass, and gyration radius. In view of their different physicochemical and structural characteristics, each of the blue maize starch varieties studied could have their own specific applications.  相似文献   

6.
Maize is a main botanical source used for extraction of starch in the world market. New maize cultivars with different amylose contents and special starch metabolism characteristics have been generated. Three types of maize cultivars, namely, normal maize, waxy maize (wxwx homozygous mutant), and super-sweet maize (sh2sh2 homozygous mutant), were investigated to determine differences in endosperm structures, morphologies, and physicochemical properties of starches. Maize kernels exhibited significantly different contents of total starch, soluble sugar, and amylose. Normal maize kernels contained the largest proportion of floury endosperm, followed by waxy maize and then super-sweet maize. Normal maize starch and waxy maize starch were larger in size than super-sweet maize starch. Normal maize starch and waxy maize starch were spherical and polygonal in floury and vitreous endosperms, respectively. Super-sweet maize starch was spherical both in floury and vitreous endosperms. Waxy maize starch showed the strongest birefringence patterns, the highest crystallinity and the largest proportion of ordered structure in external region of granules, and the largest proportion of double helix components, followed by normal maize starch and then super-sweet maize starch. Waxy maize starch showed the highest peak viscosity, trough viscosity, breakdown viscosity, gelatinization temperatures (i.e., gelatinization conclusion temperature, gelatinization onset temperature, gelatinization peak temperature, and gelatinization enthalpy). By contrast, super-sweet maize starch showed the lowest corresponding values for these parameters.  相似文献   

7.
韧化处理对不同玉米淀粉理化特性的影响   总被引:3,自引:0,他引:3  
杜双奎  王华  赵佳  徐卯年 《食品科学》2012,33(17):78-81
以不同直/支链比例的普通玉米淀粉和蜡质玉米淀粉为材料,在40、50、60℃进行韧化处理,研究韧化处理对玉米淀粉理化特性的影响。结果表明:韧化处理的两种玉米淀粉颗粒形貌有较小变化。韧化处理后,两种淀粉的溶解度和膨胀度随着处理温度的升高而降低;所有韧化处理过的玉米淀粉黏度低于原淀粉,起糊温度高于原淀粉;韧化处理后淀粉的糊化温度升高,热焓变化不大。  相似文献   

8.
The effects of annealing (ANN) and heat-moisture treatments (HMT) on the physicochemical and functional properties of Sword bean starches were investigated. The pasting properties differ significantly among the starches, with peak viscosity ranging from 399.17 RVU to 438.33 RVU; however, all the starches exhibited ‘Type C’ class with restricted swelling. The HMT starches had the highest gelatinization temperature, while change in enthalpy of gelatinization, ΔHgel of the native starch, was higher (13.82 J/g) than that of the modified starches (1.39–6.74 J/g). The solubility and swelling power of all the starches increased as the temperature increased. The oil and water absorption capacity of the starches ranges between 3.24–3.91 g/g and 2.42–3.35 g/g, respectively. HMT (at 25 and 30% moisture level) changes the X-ray diffraction pattern of the starch from Type ‘B’ to Type ‘C’. The Scanning electron micrograph results revealed the starch granules with smooth ellipsoids and indentation in their centre, hydrothermal modification showed little effect on the morphology and size of the granules. Hydrothermal modification improved the physicochemical and functional properties of the starch without destroying the granule of the starch.  相似文献   

9.
Starch granule development and physicochemical properties of starches in waxy wheat and non-waxy wheat were investigated in this article. Starch granules in waxy wheat endosperm showed an early developmental process. Compared with non-waxy wheat starch granules (round-shaped), waxy wheat starch granules (ellipse-shaped) were larger and contained more B-type granules. According to the granule size, starch granules were divided into two groups in waxy wheat, but were divided into three groups in non-waxy wheat. Compared with non-waxy wheat starch, waxy wheat starch had higher swelling power, gelatinization temperatures (To, Tp, Tc), and relative degree of crystallinity. They showed similar ordered structures on external regions of starch granules. Additionally, waxy wheat starch had a higher proportion of double-helical components and a lower proportion of single-helical components than non-waxy wheat starch. Based on the previous results, it was concluded: (1) waxy wheat and non-waxy wheat not only differed in starch granule development, but also in physicochemical properties of starches; (2) waxy wheat had more potential value for producing traditional products than non-waxy wheat.  相似文献   

10.
In this work the contribution of molecular structures to the swelling behavior of rice starches was investigated. Rice starches with different amylose contents (0 ‐ 23.4 %) were gelatinized to various degrees (approximately 10, 20, and 50 %) with 13 M aqueous LiCl, and the surface‐gelatinized starch and ungelatinized remaining granules were separated and characterized. The native starches were heated at 85 or 95°C for 30 min in excess water, and the granule envelope remnants were recovered by centrifugation for further characterization. The remaining granules after surface removal exhibited a lower gelatinization temperature and enthalpy, and swelled to a greater extent upon heating than the native counterpart. The amylopectin molecules in granule envelope remnants obtained at 95°C had larger Mw (weight‐average molar mass) and Rz (z‐average gyration radius) than those in remnants obtained at 85°C. The chemical composition and structure of granule envelope remnants obtained at 85°C were different from those obtained at 95°C for the same rice starch cultivar. The results imply that starch periphery may not be responsible for maintaining starch granule integrity during gelatinization and swelling. It is proposed that the composition and structure of the granule envelope remnant that maintains granule integrity are not constant but dynamic. The formation of a semi‐permeable membrane‐like surface structure during gelatinization and swelling is proposed to be a result of molecule entanglement after gelatinization.  相似文献   

11.
The starches separated from thirteen different black gram cultivars were investigated for physicochemical, thermal, morphological and pasting properties. Amylose content, swelling power, solubility and water binding capacity of starches ranged between 30.2–34.6%, 16.0–22.3 g/g, 14.8–17.3% and 73.5–84.5%, respectively. The diameter of starch granules, measured using a laser‐light scattering particle‐size analyzer, varied from 12.8 to 14.3 μm in all black gram starches. The shape of starch granules varied from oval to elliptical. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) determined using differential scanning calorimetry, ranged between 66.1–71.3, 71.0–76.2, 75.9–80.4°C and 6.7–9.4 J/g, respectively. Pasting properties of starches measured using the Rapid Visco Analyser (RVA) also differed significantly. Pasting temperature, peak viscosity, trough, breakdown, final viscosity and setback were between 75.8–80.3°C, 422–514, 180–311, 134–212, 400–439 and 102–151 Rapid Visco Units (RVU), respectively. Turbidity values of gelatinized starch pastes increased during refrigerated storage. The relationships between different properties were also determined using Pearson correlation coefficients. Amylose content showed a positive correlation with swelling power, turbidity and granule diameter. Swelling power showed a negative correlation with solubility and setback. To, Tp and Tc showed positive correlation with turbidity, pasting temperature and were negatively correlated to peak and breakdown viscosity.  相似文献   

12.
为探讨微波辐照对板栗淀粉颗粒结构和理化性质的影响,采用微波辐照板栗淀粉,通过扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、差示扫描量热仪(DSC)等研究微波处理不同时间后板栗淀粉的颗粒结构和理化特性。研究表明:与原淀粉相比,微波处理后板栗淀粉的微观形貌发生明显变化,但淀粉颗粒仍为C型晶体。随着微波处理时间的增加,直链淀粉含量增大,淀粉颗粒表面出现裂纹、孔洞和黏结越显著,淀粉颗粒的相对结晶度降低、红外光谱(1 047/1 022)cm~(-1)峰强度比值降低;淀粉膨胀度和透光率也随微波处理时间的增加而降低。DSC分析表明,微波处理80 s的淀粉相转变温度(T_o和T_p)降低、糊化焓(ΔH)减少。表明微波辐照对板栗淀粉的颗粒结构和理化特征均有显著影响。  相似文献   

13.
We have characterized and compared the morphological and thermal properties exhibited by starches from different Andean crops. Starches were extracted from tubers, root, fruits, and other starch containing parts of different plants. Morphological characterization was carried out by means of light optical microscopy. Thermal analysis was performed by DSC. The morphological properties of starch granules as well as the gelatinization parameters vary considerably among plants sources. Feret's diameter of granule starches is related to the part of the plant from which starch is obtained corresponding the largest starch granules (≈42.5 µm) to tuber sources, whereas, smallest granules to root sources (≈8.9 µm). The specific enthalpies of gelatinization were in the range 9–18.7 J/g. An inverse correlation between specific enthalpies and specific surface area (SSA) for starch with water content of 75% indicates that starches with higher SSAs need less energy to complete the gelatinization process than those with lower SSAs. The results show that starches from Andean crops could be used as raw material for the production of new starch‐based thermoplastics.  相似文献   

14.
Physicochemical, structural and morphological characteristics of maize and cassava starches treated with 0.36% concentrated HCl in anhydrous methanol at 54ºC for 1–8 h were analyzed and compared. Average yield of modified starch was about 97% for both starches. The solubility of the acid‐methanol treated starches increased with temperature and after 3 h of treatment reached 93% for maize starch and 97% for cassava starch at 95ºC. After 8 h of treatment, the average size of the cassava starch granules decreased from 14.9 to 11.1 µm. The action of acid‐methanol on the maize starch was more subtle, reducing the granule average size from 11.8 to 11.3 µm. Scanning electron micrographs showed that the granule surfaces were rough and exfoliated after treatment suggesting exocorrosion that was more evident for cassava starch. From GPC, it was noted that amylose and amylopectin were partially degraded during treatment. Starch crystallinity gradually increased with duration of treatment. The amylose content decreased from 21.4 to 18.8% and from 26.3 to 23.0% and the intrinsic viscosity was reduced from 2.36 to 0.21 and from 1.85 to 0.04 for cassava and maize starches, respectively. The gelatinization temperatures increased whereas pasting viscosities decreased with reaction time, especially for cassava starch. These results suggested that the attack of acid‐methanol, which was more effective on cassava starch granules, occurred preferentially in the amorphous areas located in the granule periphery and composed of amylose and amylopectin.  相似文献   

15.
The starches separated from bulbs of four different lily cultivars (Lanzhou, Pinglu, Yixing‐1, and Yixing‐2) were investigated for physicochemical, morphological, crystalline, and thermal properties. AM content of lily bulbs starches from different cultivars ranged from 19.46 to 25.17%. The swelling power of starches ranged between 14.4 and 21.3 g/g, and the solubility ranged from 8.92 and 16.6% at the temperature of 85°C. Four cultivars of lily starches paste had excellent transparency and the transmittance value of Lanzhou lily as high as 54.7%. The transmittance of the gelatinized aqueous starch suspensions, from all lily cultivars, decreased with increase in storage period. The shape of starch granules varied from triangular to cylindrical and XRD of four lily starches all showed B‐type pattern. The transition temperatures and enthalpy of gelatinization (ΔHgel) were determined using DSC. Tp varied from 62.52 to 65.25°C. Pinglu lily starch showed the highest ΔHgel and gelatinization range (TcTo) index among starches from four different lily cultivars.  相似文献   

16.
Starch was isolated from Mexican chayote tubers (Sechium edule Sw.) and the yield, physicochemical, rheological, and molecular characteristics were investigated. Commercial potato was used for comparison. Starch yield was 49% with a purity of 89.1%. AM content of chayote tuber starch was 26.3%. Birefringence was shown in chayote tuber starch and granules had diverse shapes such as spherical, oval, and polygonal, with size between 10 and 25 µm. B‐type XRD pattern was shown by chayote tuber starch. Chayote tuber starch had higher peak viscosity (PV) than potato starch and the maximum PV for chayote tuber starch was obtained at lower temperature. Flow properties of chayote tuber starch showed higher hysteresis than potato at the same concentration. In chayote tuber and potato starches, G′ > G″ at both temperatures. Chayote tuber starch presented slightly lower gelatinization temperatures, but slightly higher enthalpy of gelatinization than potato starch, and similar retrogradation rate (due to the enthalpy value of the phase transition) were found in both tuber starches. Chayote tuber starch presented higher Mw and Rz values than potato starch. Chayote tuber could be an alternative for starch isolation with specific physicochemical and molecular characteristics.  相似文献   

17.
Starch samples from ten mung bean cultivars grown in china were isolated, and their morphology, physicochemical, thermal, and pasting properties were evaluated. The objectives of the study were to investigate the starch properties and processing characteristics of different mung bean varieties, and to establish the basic foundation of improving the functionality of mung beans and their starch grown in the region. The mung bean starches showed the kidney-shaped, elliptical, small spherical and dome-shaped granules, and the starches granule size varied between 5 and 40 μm. Total starch content, amylose content, solubility, and swelling power ranged from 54.73% to 57.99%, 40.44% to 41.82%, 13.72% to 17.67%, and 17.27% to 20.55%, respectively. The pasting properties were determined using a rapid visco analyzer, and various mung bean starches exhibited different pasting profiles. Different starches differed in transition temperatures (T o, T p, and T c), gelatinization temperature range (ΔT r), and enthalpy of gelatinization (ΔH) according to differential scanning calorimeter analysis. Hydration coefficient, degree of gelatinization, and hardness of mung bean varieties ranged from 51.97% to 84.46%, 62.99% to 95.11%, and 26.07 N to 112.11 N, respectively. This study indicated that starches separated from different mung bean cultivars possess different physicochemical characteristics, and various mung beans cultivars showed diverse processing properties.  相似文献   

18.
本研究通过偏光显微镜、扫描电子显微镜、热台显微镜、X射线衍射、差示扫描量热分析、傅里叶变换红 外光谱分析等手段,研究原脱胚玉米、挤压脱胚玉米和添加耐高温α-淀粉酶挤压脱胚玉米的淀粉结构及性质变化, 并探究其相互关系,揭示挤压剪切活化对脱胚玉米的淀粉颗粒机械力化学效应。研究表明:与原脱胚玉米和挤压脱 胚玉米相比较,挤压处理对添加耐高温α-淀粉酶脱胚玉米的淀粉结构及性质产生显著影响,酶解力和糊化度增大,碘 蓝值、直链淀粉含量减小。添加耐高温α-淀粉酶挤压脱胚玉米淀粉颗粒形貌破坏,偏光十字破坏,结晶度变小;升温糊 化过程中,焓变降低;挤压使淀粉颗粒的结晶结构破坏,淀粉颗粒发生聚集,破损淀粉颗粒易糊化和裂解。  相似文献   

19.
The effects of modification sequence on chemical structures and physicochemical properties of hydroxypropylated (HP) and crosslinked (XL) waxy maize starch were investigated. The physicochemical properties, including pasting, gelling, and thermal properties, were studied. The chemical structures of dual‐modified starches and their beta‐limit dextrins were characterized with high‐performance liquid chromatography. The HP‐XL starch had higher Brabender viscosity than did the XL‐HP starch at both pH 7 and 3; however, both showed similar gelling properties. Significantly higher onset and peak gelatinization temperatures, gelatinization enthalpy, and lower retrogradation were observed for the HP‐XL starch. The HP‐XL starch also exhibited significantly higher beta‐amylolysis limit and higher content of low molecular weight saccharides in its isoamylase‐debranched starch, suggesting its structure was more accessible to enzymatic attack than the XL‐HP starch. Structural analyses revealed different distribution patterns of modifying groups between the two modified starches. The results indicate that the modification sequence altered the susceptibility to enzymes, changed the locations of substitution, and modified the physicochemical properties of the HP and XL waxy maize starches.  相似文献   

20.
本文采用蜡质玉米、普通玉米和高直链玉米淀粉为原料,改变有效氯添加量,制备羟丙基氧化淀粉,通过XRD、DSC、Brabender粘度仪等测定手段,研究不同直链淀粉含量对羟丙基氧化淀粉理化性质的影响。实验表明,直链淀粉含量对羟丙基化和氧化程度影响显著,其中直链淀粉含量高有利于羟丙基化,而不利于氧化;X-射线衍射分析发现,改性淀粉没有改变晶型,随氧化程度增加,淀粉分子结晶度下降,直链淀粉含量越高,下降趋势越缓;DSC测试和Brabender粘度分析表明,直链淀粉含量直接影响到羟丙基氧化淀粉糊化特性,糊化温度:高直链普通蜡质,糊粘度:蜡质普通高直链,糊化焓:蜡质普通高直链;通过观察淀粉的偏光特性和颗粒表面形态,发现直链淀粉含量越高,羟丙基氧化淀粉的偏光十字越弱,颗粒越不易破碎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号