首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effective interfacial adhesion between wood fibers and plastics is crucial for both the processing and ultimate performance of wood–plastic composites. Coupling agents are added to wood–plastic composites to promote adhesion between the hydrophilic wood surface and hydrophobic polymer matrix, but to date no coupling agent has been reported for PVC/wood‐fiber composites that significantly improved their performance and was also cost‐effective. This article presents the results of a study using chitin and chitosan, two natural polymers, as novel coupling agents for PVC/wood‐flour composites. Addition of chitin and chitosan coupling agents to PVC/wood‐flour composites increased their flexural strength by ~20%, their flexural modulus by ~16%, and their storage modulus by ~33–74% compared to PVC/wood‐flour composite without the coupling agent. Significant improvement in composite performance was attained with 0.5 wt% of chitosan and when 6.67 wt% of chitin was used. J. VINYL ADDIT. TECHNOL., 11:160–165, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
In an effort to determine to what extent natural fiber/plastic composites were recyclable, this study conducted repetitive processing cycles on wood flour/polypropylene composites through extrusion up to three times followed by injection molding. Mechanical properties of the composites, containing 10–50?wt% wood flour and with/without addition of 3?wt% maleic anhydride polypropylene (MAPP) as coupling agent, were evaluated by conducting tensile test, thermal analysis, and water absorption test. Repetitive processing as well as wood content and coupling agent addition influenced physical properties of the composites. MAPP functioned well in improving fiber-matrix adhesion in terms of mechanical properties. Repetitive processing did not deteriorate the composite’s properties; rather opposite effect was shown. Thermal analysis indicated that the alteration in properties was contributed by the molecular condition of the polypropylene matrix. Water absorption increased with the wood flour content but reduced when MAPP was added and with more processing cycles.  相似文献   

3.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

4.
This article describes the properties of composites using unplasticized PVC matrix and wood flour (obtained by crushing the bark of Eugenia jambolana) as filler. Composites were prepared by mixing PVC with varying amounts of wood flour (ranging from 10–40 phr; having particle sizes of 100–150 μm and <50μm) using two‐roll mill followed by compression molding. The effect of wood flour content and its particle size on the properties, i.e., mechanical, dynamic mechanical, and thermal was evaluated. Tensile strength, impact strength, and % elongation at break decreased with increasing amounts of wood flour. Stiffness of the composites (as determined by storage modulus) increased with increasing amounts of the filler. Modulus increased significantly when wood flour having particle size <50 μm was used. Morphological characterization (SEM) showed a uniform distribution of wood flour in the composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
In this study, the influence of coupling agent concentration (0 and 3 wt%), wood fiber content (50, 60, 70, and 80 wt%), and size (40–60, 80–100, and 160–180 mesh) on the mechanical properties of wood/high-density-polyethylene (HDPE) composites (WPCs) was investigated. WPC samples were prepared with poplar wood-flour, HDPE, and polyethylene maleic anhydride copolymer (MAPE) as coupling agent. It was found that the tensile properties and the flexural properties of the composites were improved by the addition of 3 wt% MAPE, and the improved interfacial adhesion was well confirmed by SEM micrographs. It was also observed that the best mechanical properties of wood/HDPE composites can be reached with larger particle size in the range studied, while too-small particle size was adverse for the mechanical properties of wood/HDPE composites. Moreover, the tensile modulus, tensile strength, and flexural strength of WPCs decreased with the increase in fiber content from 50 to 80 wt%; the flexural modulus of WPCs increased with the increase in fiber content from 50 to 70 wt% and then decreased as the fiber content reached 80 wt%. The variances in property performance are helpful for the end-user to choose an appropriate coupling agent (MAPE) concentration, wood fiber content, and particle size based on performance needs and cost considerations.  相似文献   

6.
Effects of wood flour species and polyethylene grafted with maleic anhydride (MA‐PE) on mechanical properties and morphology and torque rheology of high density polyethylene (HDPE)/wood flour composites have been comparatively investigated. The results demonstrated that without compatbilizer, wood flour species exhibited little influence on mechanical properties. In the presence of MA‐PE, the mechanical properties were obviously increased. On the basis of the mechanical property data obtained from wood flour extracted by different methods, the extractant was an important factor affecting the mechanical properties. Manchurian ash and larch wood flours extracted by hot water presented almost the same mechanical properties, and larch wood flour was the most beneficial to enhance the mechanical properties. The scanning electron microscopy (SEM) and the atomic force microscopy (AFM) further confirmed that interfacial adhesion and dispersion of manchurian ash wood flour in composites were effectively improved by MA‐PE. The torque results demonstrated that the chemical reactions of maleic anhydride groups on MA‐PE with hydroxyl on cellulose in wood flour probably took place due to the increase of the equilibrium torque and the appearance of the torque peak, and larch wood flour was more beneficial to prepare the composites containing the higher wood flour content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Biodegradable composites were prepared using microcrystalline cellulose (MCC) as the reinforcement and polylactic acid (PLA) as a matrix. PLA is polyester of lactic acid and MCC is cellulose derived from high quality wood pulp by acid hydrolysis to remove the amorphous regions. The composites were prepared with different MCC contents, up to 25 wt %, and wood flour (WF) and wood pulp (WP) were used as reference materials. Generally, the MCC/PLA composites showed lower mechanical properties compared to the reference materials. The dynamic mechanical thermal analysis (DMTA) showed that the storage modulus was increased with the addition of MCC. The X‐ray diffraction (XRD) studies on the materials showed that the composites were less crystalline than the pure components. However, the scanning electron microscopy (SEM) study of materials showed that the MCC was remaining as aggregates of crystalline cellulose fibrils, which explains the poor mechanical properties. Furthermore, the fracture surfaces of MCC composites were indicative of poor adhesion between MCC and the PLA matrix. Biodegradation studies in compost soil at 58°C showed that WF composites have better biodegradability compared to WP and MCC composites. The composite performances are expected to improve by separation of the cellulose aggregates to microfibrils and with improved adhesion. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2014–2025, 2005  相似文献   

8.
Polylactide (PLA)‐based wood–plastic composites (WPCs) were successfully manufactured by extrusion blending followed by injection molding. The effects of polyhydroxyanoates (PHAs) on the mechanical and thermal properties and the morphologies of the PLA‐based WPCs were investigated with mechanical testing, thermal analysis, and scanning electronic microscopy (SEM). The inclusion of PHAs in the PLA‐based WPCs produced an increase in the impact resistance and a decrease in the tensile strength. The brittle–ductile transition of the impact strength for the PLA‐based WPCs toughened with PHAs was confirmed when the wood flour content was between 15 and 35 wt %. SEM images showed that the fracture surfaces of the PLA‐based WPCs toughened with PHAs were rougher than that of their nontoughened counterparts. The ternary PLA‐based WPCs exhibited ductile fracture during mechanical testing. Differential scanning calorimetry (DSC) showed that addition of PHAs into the composites caused deviations of the cold crystallization temperature and melting temperature of PLA. Thermogravimetric analysis indicated that the PHAs reduced the thermal stability of the PLA‐based WPCs. PHAs can be a green toughening agent for PLA‐based WPCs. The specific properties evidenced by the biocomposites may hint at their potential application, for example, in the automotive industry and civil engineering. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The viability of vinyltrimethoxy silane was investigated as a coupling agent for the manufacture of wood–plastic composites (WPC). The effect of silane pretreatment of the wood flour on the thermal and the dynamic mechanical properties and thermal degradation properties of the composites were studied. Moreover, the effect of organosilane on the properties of composites was compared with the effect of maleated polypropylene (MAPP). DSC studies indicated that the wood flour acts as a PP-nucleating agent, increasing the PP crystallization rate. In general, pretreatment with small amounts of silane improved this behavior in all the WPCs studied. Thermal degradation studies of the WPCs indicated that the presence of wood flour delayed degradation of the PP. Silane pretreatment of the wood flour augmented this effect, though without significantly affecting cellulose degradation. Studies of dynamic mechanical properties revealed that the wood flour (at up to 30 wt %) increased storage modulus values with respect to those of pure PP; in WPCs with a higher wood flour amount, there was no additional increase in storage modulus. Pretreatment of the wood flour with silane basically had no effect on the dynamic mechanical properties of the WPC. These results show that with small amounts of vinyltrimethoxy silane similar properties to the MAPP are reached. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Copper amine–treated wood flour was added to PVC [poly(vinyl chloride)] matrix in order to manufacture PVC/wood‐flour composites. Effects of copper treatments on the mechanical properties of PVC‐wood composites were evaluated. Unnotched impact strength, flexural strength, and flexural toughness of the composites were significantly improved by the wood‐flour copper treatment. The optimum copper concentration range was 0.2 to 0.6 wt% of wood flour. Fractured surfaces were examined by using scanning electron microscopy (SEM) combined with energy‐dispersive spectroscopy (EDS). PVC/wood interfacial debonding was the main fracture mode of untreated wood‐flour composites, whereas wood‐particle pullout and breakage dominating the fractured surfaces of copper‐treated wood‐flour composites. On the fractured surfaces, more PVC could be found on the exposed copper‐treated wood particles than on untreated wood, a result suggesting improved PVC‐wood interfacial adhesion after copper treatments. J. Vinyl Addit. Technol. 10:70–78, 2004. © 2004 Society of Plastics Engineers.  相似文献   

11.
This study aims to investigate the thermo‐physical, mechanical, and thermal degradation properties of betel nut husk (BNH) fiber reinforced vinyl ester (VE) composites. These properties were evaluated as a function of fiber maturity, fiber content, and fiber orientation. Thermo‐physical properties were analyzed experimentally using a hot disk TPS method. The introduction of BNH was found to reduce the thermal conductivity of neat VE. The thermal conductivity and thermal diffusivity of BNH reinforced VE composites decreased with the increase in fiber content. Short fiber BNH reinforced VE composites showed the lowest thermal conductivity as compared to the unidirectional and random nonwoven composites. The TGA analysis shows lower resin transition peak for the BNH reinforced VE composites than the peak of neat VE. Fiber maturity had a notable effect on the flexural modulus of the BNH fiber reinforced VE composites. Incorporation of 10 wt% BNH fibers into the composite has increased the composites' flexural modulus by 46.37%. However, further increases in the fiber content reduced both flexural strength and modulus of the composites. POLYM. COMPOS., 37:2008–2017, 2016. © 2015 Society of Plastics Engineers  相似文献   

12.
Biocomposites of kenaf fiber (KF) and polylactic acid (PLA) were prepared by an internal mixer and compression molding. PLA was plasticized with polyethylene glycol (PEG) (10 wt%) and evaluated as the polymer matrix (p‐PLA). Fiber loadings were varied between 0 and 40 wt%. The tensile, dynamic mechanical, and morphological properties and water absorption behavior of these composites were studied. Reinforcing effect of KF was observed when fiber loading exceeded 10 wt% despite of the inferior fiber‐matrix adhesion observed via scanning electron microscopy (SEM). Un‐plasticized PLA/KF composite exhibited higher tensile properties than its plasticized counterpart. Fiber breakage and heavily coated short pulled‐out of fibers were observed from the SEM micrographs of the composite. The presence of PEG might have disturbed the fiber‐matrix interaction between KF and PLA in the plasticized composites. Addition of PEG slightly improved the un‐notched impact strength of the composites. Dynamic mechanical analysis showed that the storage and loss moduli of p‐PLA/KF composites increased with the increase in fiber loading due to increasing restrictions to mobility of the polymer molecules. The tan delta of the composites in contrast showed an opposite trend. p‐PLA and p‐PLA/KF composites exhibited non‐Fickian behavior of water absorption. SEM examination revealed microcracks on p‐PLA and p‐PLA/KF surfaces. POLYM. COMPOS., 31:1213–1222, 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Three types of composites, namely, polylactide (PLA)/nanoclay, PLA/core–shell rubber, and PLA/nanoclay/core–shell rubber, were melt compounded via a corotating twin‐screw extruder. The effects of two types of organically modified montmorillonite nanoclays (i.e., Cloisite®30B and 20A), two types of core (polybutylacrylate)–shell (polymethylmethacrylate) rubbers (i.e., Paraloid EXL2330 and EXL2314), and the combination of nanoclay and rubber on the mechanical and thermal properties of the composites were investigated. According to X‐ray diffraction and transmission electron microscopy analyses, both types of PLA/5 wt% nanoclay composites had an intercalated morphology. In comparison with pure PLA, both types of PLA/5 wt% nanoclay composites had an increased modulus, similar impact strength, slightly reduced tensile strength, and significantly reduced strain at break. On the other hand, PLA/EXL2330 composites with a rubber loading level of 10 wt% or higher had a much higher impact strength and strain at break, but a lower modulus and strength when compared with pure PLA. The simultaneous addition of 5 wt% nanoclay (Cloisite®30B) and 20 wt% EXL2330 resulted in a PLA composite with a 134% increase in impact strength, a 6% increase in strain at break, a similar modulus, and a 28% reduction in tensile strength in comparison with pure PLA. POLYM. ENG. SCI. 46:1419–1427, 2006. © 2006 Society of Plastics Engineers  相似文献   

14.
Agricultural lignocellulosic fiber (wood flour)‐waste was used to prepare composite materials through partial replacement of wood flour with low density polyethylene powder (LDPE) ranged from 10 to 20% by weight; these composites were made with and without electron beam irradiation (EB). The results obtained showed that, flexural strength, modulus of elasticity, modulus of rupture, and impact strength increase with increasing content of LDPE up to 20%. While, the percentages of thickness swelling and water absorption are decreased directly with increasing content of LDPE. Furthermore, the EB irradiation improves the physico‐mechanical properties of composite materials from 10 to 50 kGy. The results obtained are also confirmed by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
This article discusses the interrelation between formulation, processing, and properties of biocomposites composed of a bioplastic reinforced with wood fibers. Polylactide (PLA) and polylactide/thermoplastic starch blends (PLA/TPS) were used as polymeric matrices. Two grades of PLA, an amorphous and a semicrystalline one, were studied. TPS content in the PLA/TPS blends was set at 30, 50, and 70 wt%. Two types of wood fiber were selected, a hardwood (HW) and a softwood (SW), to investigate the effect of the fiber type on the biocomposite properties. Finally, the impact of different additives on biocomposite properties was studied with the purpose to enhance the bioplastic/wood fiber adhesion and, therefore, the final mechanical performance. The biocomposites containing 30 wt% of wood fibers were obtained by twin‐screw extrusion. The properties of the biocomposites are described in terms of morphology, thermal, rheological, and mechanical properties. Furthermore, the biocomposites were tested for humidity and water absorption and biodegradability. An almost 100% increase in elastic modulus and 25% in tensile strength were observed for PLA/wood fiber biocomposite with the best compatibilization strategy used. The presence of the TPS in the biocomposites at 30 and 50 wt% maintained the tensile strength higher or at least equal as for the virgin PLA. These superior tensile results were due to the inherent affinity between the matrices and wood fibers improved by the addition of a combination of coupling and a branching agent. In addition to their outstanding mechanical performance, the biocomposites showed high biodegradation within 60 days. POLYM. ENG. SCI., 54:1325–1340, 2014. © Her Majesty the Queen in Right of Canada 2013 1   相似文献   

16.
Aluminum hydroxide, magnesium hydroxide, and 1,2‐bis(pentabromophenyl) ethane were incorporated into high‐density polyethylene (HDPE) and wood flour composites, and their mechanical properties, morphology, and fire‐retardancy performance were characterized. The addition of flame retardants slightly reduced the modulus of elasticity and modulus of rupture of composites. Morphology characterization showed reduced interfacial adhesion among wood flour, HDPE, and flame retardants in the composites compared with control composites (HDPE and wood flour composites without the addition of flame retardants). The flame retardancy of composites was improved with the addition of the flame retardants, magnesium hydroxide and 1,2‐bis(pentabromophenyl) ethane, especially 1,2‐bis(pentabromophenyl) ethane, with a significant decrease in the heat release rate and total heat release. Char residue composition and morphology, analyzed by attenuated total reflectance, Fourier‐transform infrared spectroscopy, and scanning electron microscopy, showed that the char layer was formed on the composite surface with the addition of flame retardants, which promoted the fire performance of composites. The composites with 10 wt% 1,2‐bis(pentabromophenyl) ethane had good fire performance with a continuous and compact char layer on the composite surface. J. VINYL ADDIT. TECHNOL., 24:3–12, 2018. © 2015 Society of Plastics Engineers  相似文献   

17.
《Polymer Composites》2017,38(5):863-869
Water absorption and mechanical performance of the injection‐molded hybrid composites prepared from different ratios of two polymer blends (57 wt%), two compatibilizers (3 wt%), and two wood species (40 wt%) were investigated. The ratio of polypropylene and high‐impact polystyrene (HIPS) gradually increased in the blend (from 10 to 30 wt%). Styrene–ethylene–butylene–styreneblock copolymer and maleic anhydride‐grafted PP (MAPP) were used as compatibilizer (3 wt%). The shore D hardness of the PP/wood composites was improved by the incorporation of the HIPS. The HIPS/wood flour composites showed higher tensile modulus but lower tensile strength than the PP/wood composites. The water resistance of the PP/wood composites decreased with increasing HIPS content. POLYM. COMPOS., 38:863–869, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
In the present study, poly(lactic acid) (PLA), a biodegradable plastic, was melt‐blended with five weight percentages (10–50 wt%) of ethylene vinyl acetate (EVA) copolymer, a non‐biodegradable plastic, having a vinyl acetate content of 19 wt% and a melt flow index of 530 g/10 min, on a twin screw extruder, followed by an injection molding. The blends at 10 and 20 wt% EVA revealed a noticeably increased impact strength and strain at break over the pure PLA, and the blend at 10 wt% EVA exhibited the highest impact strength and strain at break. The 90/10 (wt%/wt%) PLA/EVA blend was then selected for preparing either single or hybrid composite with wood flour (WF) and wollastonite (WT). The filler loading was fixed at 30 parts by weight per hundred of resin throughout the experiment, and the WF/WT weight ratios were 30/0, 20/10, 15/15, 10/20, and 0/30. The prepared composites were examined for their mechanical and thermal properties, melt flow index, flammability, water uptake, and biodegradability as a function of composition. All the composites showed a filler‐dose‐dependent decrease in the impact strength and strain at break, but an increase in the tensile and flexural modulus (optimal at 0/30 WF/WT) and tensile and flexural strength (optimal at 30/0 WF/WT) as compared with the neat 90/10 (wt%/wt%) PLA/EVA blend. In addition, the melt flow index, char residue, anti‐dripping ability, water uptake, and biodegradability of the composites were also higher than those of the neat blend. J. VINYL ADDIT. TECHNOL., 25:313–327, 2019. © 2019 Society of Plastics Engineers  相似文献   

19.
This paper presents the effects of multi‐walled carbon nanotube (MWCNT) as reinforcing agent on some properties of natural fiber/polypropylene composites. In the sample preparation, MWCNT contents and fiber types (bagasse stalk and poplar) were used as variable parameters. The composites with different MWCNT contents were fabricated by melt compounding in a twin‐screw extruder and then by injection molding. The mass ratio of the wood flour to polymer was 40/60 (w/w). The mechanical properties of composites in terms of tensile, flexural, and Izod impact strength were evaluated. The morphology of the specimens was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Based on the findings of this study, it appears that mechanical properties reached the maximum when 2.5 wt% MWCNT were used. However, addition of 3.5 wt% MWCNT could not enhance the mechanical properties considerably. TEM micrographs showed that at high level of MWCNT loading (3.5 wt%) increased population of MWCNT leads to agglomeration and stress transfer gets blocked. The mechanical properties of composites filled with poplar fibers were generally greater than bagasse stalk composites. POLYM. COMPOS., 37:3269–3274, 2016. © 2015 Society of Plastics Engineers  相似文献   

20.
Polylactide (PLA)‐recycled wood fiber (RWF) composites with a small amount of silane were compounded using a kinetic‐mixer and molded using an injection molding machine. The molded PLA‐RWF composites were characterized using gel permeation chromatography, scanning electron microscope, X‐ray diffraction, differential scanning calorimeter, tensile testing machine, and a dynamic mechanical analyzer. As observed in the stress–strain plots, the amount of necking before fracture decreased with an increasing RWF content. Similarly, the strain‐at‐break also decreased with the RWF content. The tensile strength remained the same irrespective of the RWF content. Both the tensile modulus and the storage modulus of the PLA‐RWF composites increased with the RWF content. The degree of crystallinity of the PLA increased with the addition of RWF. No reduction in the number–average molecular weight (Mn) was observed for pure PLA and PLA‐10%RWF‐0.5%Silane composites after injection molding; however, substantial reduction in Mn was found in PLA‐20%RWF‐0.5%Silane composites. Finally, a theoretical model based on Halpin–Tsai empirical relations is presented to compare the theoretical results with that of the experimental results. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号