首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为进一步提高HTPB推进剂的能量并抑制铝粉在燃烧过程中的团聚,制备了铝粉质量分数为16%~22%的端羟基聚丁二烯(HTPB)推进剂,并分别加入含氟有机化合物(OF)作为铝燃烧促进剂,研究了铝含量和OF对HTPB推进剂燃烧性能的影响;使用氧弹量热仪测定了推进剂在氩气氛围下(3 MPa)的爆热;收集在3 MPa下推进剂燃烧的凝聚相产物,采用激光粒度仪、X射线光电子能谱仪(XPS)及X射线衍射仪(XRD)等分别对其进行粒度分布、元素和物相分析;通过线扫描摄像机和高压燃烧室系统测定推进剂的燃速;利用高速摄影系统观察推进剂燃面上熔铝粒子的团聚过程。结果表明,HTPB推进剂在铝粉质量分数为20%时实测爆热最大,含氟有机物OF的引入使得爆热有所下降;随着HTPB推进剂中铝含量的提高,燃面上熔铝粒子的团聚愈加严重,凝聚相燃烧产物的尺寸和残留铝含量均逐渐增加;加入含氟有机物OF能够促使-Al2O3和AlF3的生成,有效抑制铝颗粒在燃烧过程中的团聚,使凝聚相燃烧产物的尺寸和残留铝含量显著降低,当铝粉质量分数为20%时,OF的加入使得残留铝的生成率降低了50%;较低的铝含量和OF的添加有利于HTPB推进剂燃速的提高。  相似文献   

2.
The condensed combustion products of two model propellants consisting of ammonium perchlorate, aluminum, nitramine, and an energetic binder were studied by a sampling method. One of the propellants contained HMX with a particle size D 10 ≈ 490 μm, and the other RDX with a particle size D 10 ≈ 380 μm. The particle-size distribution and the content of metallic aluminum in particles of condensed combustion products with a particle size of 1.2 μm to the maximum particle size in the pressure range of 0.1–6.5 MPa were determined with variation in the particle quenching distance from the burning surface to 100 mm. For agglomerates, dependences of the incompleteness of aluminum combustion on the residence time in the propellant flame were obtained. The RDX-based propellant is characterized by more severe agglomeration than the HMX-based propellant — the agglomerate size and mass are larger and the aluminum burnout proceeds more slowly. The ratio of the mass of the oxide accumulated on the agglomerates to the total mass of the oxide formed is determined. The agglomerate size is shown to be the main physical factor that governs the accumulation of the oxide on the burning agglomerate. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 4, pp. 78–92, July–August, 2006.  相似文献   

3.
Ammonium nitrate (AN)‐based composite propellants have attracted a considerable amount of attention because of the clean burning nature of AN as an oxidizer. However, such propellants have several disadvantages such as poor ignition and a low burning rate. In this study, the burning characteristics of AN‐based propellants supplemented with Fe2O3 as a burning catalyst were investigated. The addition of Fe2O3 is known to improve the ignitability at low pressure. Fe2O3 addition also increases the burning rate, while the pressure exponent generally decreases. The increasing ratio (R) of the burning rate of the AN/Fe2O3 propellant to that of the corresponding AN propellant vs. the amount of Fe2O3 added (ξ) depends on the burning pressure and AN content. R decreases at threshold value of ξ. The most effective value of ξ for increasing the burning rate was found to be 4 % for the propellant at 80 % AN, and the value generally decreased with decreasing AN content. According to thermal decomposition kinetics, Fe2O3 accelerates the reactions of AN and binder decomposition gases in the condensed‐ and/or gas‐phase reaction zones. The burning characteristics of the AN‐based propellant were improved by combining catalysts with differing catalytic mechanisms instead of supplementing the propellant with a single catalyst owing to the multiplicative effect of the former.  相似文献   

4.
The burning rate characteristics of the propellant containing TiH2 have been examined in order to understand the effect of TiH2 addition on the combustion wave structure. The burning rate increases and the pressure exponent of burning rate decreases as the addition of TiH2 increases. Using very fine thermocouples which were embedded within the propellant samples, the heat transfer process in the combustion wave was determined. The results indicate that the heat flux feedback from the gas phase to the burning surface increases when TiH2 is mixed within the propellants.  相似文献   

5.
Hydroxyl‐terminated polybutadiene (HTPB) based propellants containing fixed aluminum content (18 wt %) and different amounts of organic fluoride (OF) additive were studied. Explosion heat of propellant samples and particle size distribution of the solid combustion products were experimentally measured to generally assess the effect of the organic fluoride compounds on propellants. Heats of explosion decreased approximately by 9.5 %, from 7209 (±259) to 6525 (±146) kJ kg−1, with the increase in OF content from 0 % to 6 %, and the volume fraction of particles size above 10 μm was sharply decreased. In addition, scanning electron microscope images showed the solid combustion products to be well separated, the titration analysis results also gave the amount of unburned metallic aluminum decreased. These results indicated that OF as an additive would be helpful to reduce agglomeration in the combustion products of aluminized HTPB propellants. Furthermore, a mechanism for suppression of agglomerate size can be postulated based on the X‐ray diffraction analysis data that addition of OF promotes increased content of γ‐Al2O3 (aluminum oxide) in the solid combustion products.  相似文献   

6.
The deflagration and combustion efficiency of 80 nm aluminum/ice (ALICE) mixtures with equivalence ratios of ϕ=1.0, 0.75, and 0.67 were experimentally investigated. We find that pressure exponent and burning rate vary little between these three mixtures, with the exponent varying only from 0.42 to 0.50 and burning rate at 6.9 MPa varying from 2.05 to 2.10 cm s−1. However, reducing the equivalence ratio from 1.0 to 0.67 surprisingly increases combustion efficiency from 70 % to 95 % with unburned aluminum agglomerates visible in electron microscopy photographs of 70 % combustion efficiency (ϕ=1.0) products. Our findings suggest that nanoaluminum/water combustion is diffusionally limited for all conditions considered. Aging tests on the propellant show that storage at −30 °C essentially stops the Al/H2O reaction such that little nanoaluminum degradation occurs after 200 days. Electrostatic discharge (ESD), shock initiation, and impact sensitivity tests indicate that the propellant is insensitive to ignition by these stimuli. Specifically, while neat nanoaluminum powders are highly ESD sensitive (ignition threshold 0.3–14 mJ), nAl/H2O mixtures are insensitive to ESD and have ignition thresholds in excess of 400 mJ. Likewise, nAl/H2O mixtures are insensitive to impact ignition, having an ignition threshold in excess of 2.2 m. Propellants containing 80 nm or larger average particle size aluminum were also found to be insensitive to shock initiation.  相似文献   

7.
The burning rate of AP/HTPB composite propellant increases with increasing AP content and with decreasing AP size. In addition, the burning rate can be enhanced with the addition of Fe2O3. The burning characteristics and thermal decomposition behavior of AP/HTPB composite propellant using coarse and fine AP particles with and without Fe2O3 at various AP contents were investigated to obtain an exhaustive set of data. As the AP content decreased, the burning rate decreased and the propellants containing less than a certain AP content self‐quenched or did not ignite. The self‐quenched combustion began at both lower and higher pressures. The lower limit of AP content to burn the propellant with coarse AP was lower than that with fine AP. The lower limit of AP content to burn was decreased by the addition of Fe2O3. The thermal decomposition behavior of propellants prepared with 20–80 % AP was investigated. The decrease in the peak temperature of the exothermic decomposition suggested an increased burning rate. However, a quantitative relationship between the thermochemical behavior and the burning characteristics, such as the burning rate and the lower limit of AP content to burn, could not be determined.  相似文献   

8.
Most solid rockets are powered by ammonium perchlorate (AP) composite propellant including aluminum particles. As aluminized composite propellant burns, aluminum particles agglomerate as large as above 100 μm diameter on the burning surface, which in turn affects propellant combustion characteristics. The development of composite propellants has a long history. Many studies of aluminum particle combustion have been conducted. Optical observations indicate that aluminum particles form agglomerates on the burning surface of aluminized composite propellant. They ignite on leaving the burning surface. Because the temperature gradient in the reaction zone near a burning surface influences the burning rate of a composite propellant, details of aluminum particle agglomeration, agglomerate ignition, and their effects on the temperature gradient must be investigated. In our previous studies, we measured the aluminum particle agglomerate diameter by optical observation and collecting particles. We observed particles on the burning surface, the reaction zone, and the luminous flame zone of an ammonium perchlorate (AP)/ammonium nitrate (AN) composite propellant. We confirmed that agglomeration occurred in the reaction zone and that the agglomerate diameter decreased with increasing the burning rate. In this study, observing aluminum particles in the reaction zone near the burning surface, we investigated the relation between the agglomerates and the burning rate. A decreased burning rate and increased added amount of aluminum particles caused a larger agglomerate diameter. Defining the extent of the distributed aluminum particles before they agglomerate as an agglomerate range, we found that the agglomerate range was constant irrespective of the added amount of aluminum particles. Furthermore, the agglomerate diameter was ascertained from the density of the added amount of aluminum particles in the agglomerate range. We concluded from the heat balance around the burning surface that the product of the agglomerate range and the burning rate was nearly constant irrespective of the added amount of aluminum particles. Moreover, the reduced burning rate increased the agglomerate range.  相似文献   

9.
为了更好地研究发射药的点火性能,在基于密闭爆发器原理的点火性能测试装置基础上增加了一个延迟点火部件,构建了一个新型点火性能模拟试验装置,根据该装置建立了简单的火药分层点火过程模型,模拟并对比了高能太根-18/1、双芳-3-18/1及NR11-18/1三种发射药的点火性能。结果表明,NR11-18/1发射药较易点火,双芳-3-18/1发射药最难点火,点火时间分别为19和45ms。增加延迟点火部件后,可将点火药的燃烧和发射药的燃烧阶段有效区分,不仅有利于对比点火性能差异较小的发射药之间的区别,还有助于分析发射药低压段的燃烧速度。随着延迟点火部件长度的增加,点火时间也增长。  相似文献   

10.
A statistical model of aluminum agglomeration during combustion of solid composite rocket propellants is considered; the model describes the process dynamics, beginning from propellant heating in the combustion wave and ending by separation of agglomerates from the burning surface. An algorithm of computing the agglomeration process by the Monte Carlo method is proposed. A series of computations of aluminum agglomeration is performed; the density distribution functions for agglomerate sizes are derived; the dependence of the mean-mass size of agglomerates on the mean-mass size of ammonium-perchlorate particles is determined. The model proposed predicts power dependences of the mean-mass size of agglomerates on pressure and burning rate, which agrees with available experimental data.__________Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 2, pp. 62–74, March–April, 2005.  相似文献   

11.
The combustion characteristics of propellants containing AP, HMX, an energetic binder, and aluminum particles with various polymer coatings are studied at pressures of 0.15 and 4.6 MPa. It is found that the coatings influence the burning rate, the particle size distribution of condensed combustion products, and the completeness of aluminum combustion. It is shown that the agglomeration can be reduced by using aluminum with fluorine-containing coatings. The application of some coatings results in a reduction in the mass of the agglomerates with an insignificant increase in their size. The greatest effect was achieved when using aluminum coated with (CH2=CH-CH2-O)2Si[OCH2(CF2-CF2)2H]2 [bis(allyloxy)-bis(2,2,3,3,4,4,5,5-octafluoropentyloxy)silane]. For this coating, a size reduction is also observed for micron-size oxide particles. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 3, pp. 83–97, May–June, 2007.  相似文献   

12.
This paper gives a brief review of methods for modifying metallic fuels for composite solid propellants, including the application of coatings onto aluminum particles (encapsulation). Requirements for the coating material are formulated. By means of thermodynamic calculations, it is shown that some fluorine-containing coatings reduce the content of the condensed phase in the propellant combustion products without decreasing the specific impulse. A mathematical model for the ignition of a single encapsulated particle is proposed. Calculations show a decrease in the ignition time of an aluminum particle with a fluorine-containing coating. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 5, pp. 46–55, September–October, 2006.  相似文献   

13.
含FOX-7发射药的燃烧性能   总被引:1,自引:0,他引:1  
采用常规密闭爆发器研究了含FOX-7硝胺发射药的燃速、压强指数和压强变化率。结果表明,随着样品中FOX-7含量的增加,发射药的点火延滞时间增加,燃速系数减小,燃速降低;其压强变化率的最大值及增长速率均降低。当燃烧压强小于150MPa时,FOX-7含量对发射药的压强指数没有影响,FOX-7改善发射药压强指数的能力不明显;随着燃烧压强的增加,含FOX-7发射药的压强指数降低,尤其当燃烧压强大于200MPa时,发射药的燃速压强指数显著降低。随着发射药中FOX-7含量的增加,其压强指数及燃速系数均降低,有利于发射药的稳定燃烧。  相似文献   

14.
Aluminum hydride is a promising candidate for application in energetic materials and hydrogen storages. E.g. an AP/HTPB rocket propellant filled with alane was calculated for a 100 N s kg−1 higher specific impulse compared to the same concentration of aluminum. Different investigations on α‐AlH3 polyhedra using thermoanalytical methods and X‐ray diffraction were performed to receive a better understanding of dehydration at about 450 K, passivation of the remaining porous aluminum particles and further oxidation. A modeling approach to describe these conversions including diffusion processes, Avrami‐Erofeev mechanism and Arrhenius type reaction steps of n‐th order were introduced. Results were discussed in comparison to experimental investigations under pressure with model propellants on the base of gelled pure nitromethane and also filled with alane or pure aluminum in concentrations of 5%, 10% and 15%. Both alane and aluminum increase the burning rate on a factor of two correlated with a temperature increase up to 500 K and more. A mesa burning effect at 6 to 10 MPa was indicated by the mixtures with alane.  相似文献   

15.
This paper presents the results of an experimental study of the combustion of composite solid propellants with a double oxidizer (ammonium perchlorate/HMX) at pressures of 0.03–0.1 MPa. Systems containing a micron-sized aluminum powder (ASD-4) and the Alex ultrafine aluminum powder were investigated. It was shown that the replacement of ASD-4 by Alex in propellant systems led to an increase in the burning rate. The aluminum particle size and the oxidizer excess coefficient were found to affect the exponent in the power-law burning-rate dependence. The range of the oxidizer excess coefficient was determined that corresponded to the effective replacement of micron-sized aluminum by ultrafine aluminum for which the exponent in the power-law burning rate dependence decreases. __________ Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 1, pp. 47–55, January–February, 2009.  相似文献   

16.
A nanocomposite microsphere consisting of solid paraffin, nano‐TiO2, nano‐BN, zeolitic imidazolate framework‐67 particles and polymethyl methacrylate was prepared and applied as a functional additive for high energy propellants (with about 23 wt % RDX) to reduce the barrel erosion and improve its combustion performance as well. High energy propellants modified with the nanocomposite were manufactured by a solvent extrusion technique. According to the scanning electron microscope and differential scanning calorimetry results, there exists a good compatibility between the nanocomposite and propellant matrix. The energy and combustion performance as well as erosion of the modified propellants were studied by a closed bomb test and an erosion tube device, respectively. Results showed that compared with the unmodified propellant, both the erosion and energy performance of modified high energy propellant gradually decreased with the increase of nanocomposites contents. When the content of nanocomposites was 5.1 %, the erosion mass of the modified propellant reduced to 37.0 % while the propellant force only decreased 5.7 %, indicating that the nanocomposite has enormous ability to improve gun erosion resistance while barely affect energy performance of propellant. Furthermore, the closed bomb burning curves of the samples showed that addition of nanocomposites to propellant matrix could prolong the combustion time, efficiently inhibit the initial generation rate of combustion gas, and further achieve the progressive burning of the propellants.  相似文献   

17.
LOVA发射药点火燃烧性能   总被引:1,自引:0,他引:1  
制备了含有两种不同黏结剂的低易损性发射药(即LOVA发射药),并应用点火燃烧模拟装置与密闭爆发器对其点火燃烧性能进行了研究。结果表明,LOVA发射药难点火,但在点火药中添加高氯酸铵后可有效改善LOVA发射药的点火性能。LOVA发射药燃烧具有燃速系数低、燃速压力指数高等特点。  相似文献   

18.
Aluminum is used in solid propellants to increase the specific impulse (I sp). It is desirable to have high propellant loading in any stage as it reduces the structural coefficient and an end burning grain is known to be the one with the highest propellant loading. As aluminum combustion is a slow process, the time available for aluminum combustion in an end burning configuration will be very small at the start of the combustion process. This demands an increase in the reactivity of the aluminum. This study is built on the fact that mechanical activation of aluminum powder with PTFE (poly‐tetra‐flouro‐ethylene) enhances the reactivity of aluminum powder. This study also deals with the use of this activated aluminum powder in conjunction with various other methods to enhance the burn rates of the solid propellant. The temperature sensitivity was also measured. Based on these results, new designs with end burning grains for the third stage of Polar Satellite Launch Vehicle (PSLV) and for the second and third stage of Pegasus launch vehicle have been proposed to increase the payload capacity. With this new design, it is seen that the payload can be increased by 12.7 % and 17.6 % for PSLV and Pegasus, respectively. The novelty of this design is that with no changes to any other hardware of the above two systems the increase in payload can be achieved.  相似文献   

19.
Although a polytetrahydrofuran (PTHF) blend with added glycerin as a crosslinking modifier is an effective binder for improving the performance of a propellant, a burning catalyst is required for the combustion of the ammonium nitrate (AN)/PTHF/glycerin propellant. MnO2 and Fe2O3 are useful burning catalysts for AN‐based propellants. The thermal decomposition behaviors of the AN/PTHF/glycerin propellant supplemented with MnO2 and Fe2O3 catalysts, and the catalytic effect of these catalysts on the burning characteristics was investigated in this study. The thermal decomposition behaviors of these propellants depended on the kind of catalyst used. The propellants containing MnO2 burned above 4 MPa, while those containing Fe2O3 burned above 0.5 MPa. The burning rate increased in the order, (AN/PTHF/Fe2O3)<(AN/PTHF/MnO2)<(AN/PTHF/MnO2/Fe2O3). The improvement in the ignitability and burning rate was dependent on the kind of catalyst used. The burning characteristics of the AN/PTHF/glycerin propellants were improved by the combined effect of multiple catalysts with differing catalytic mechanisms, as compared to the propellant supplemented with any single catalyst.  相似文献   

20.
镁铝中能贫氧推进剂燃烧性能初探   总被引:3,自引:0,他引:3  
系统地研究了镁铝中能贫氧推进剂的燃烧特性,并对该类推进剂的配方进行了初步的优化设计。研究发现,高氯酸铵含量和镁铝比对贫氧推进剂燃烧特性有显著影响。增加AP含量和金属添加剂中镁粉含量均有助于提高推进剂的燃速和拓宽其低压可燃极限。另外,采用超细组分或添加燃速催化剂也是提高推进剂燃速和拓宽低压可燃极限的重要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号