首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction zone of an annealed W-SiC/Ti fibre composite was studied by means of micro-area Auger spectroscopy. The Auger peaks and the respective concentrations of the reaction products across the fibre-matrix reaction zone were analysed using smallspot line scans. In spite of surface topographical limitations it was possible to semiquantitatively determine elemental concentrations with spatial resolutions much higher than are possible using X-ray micro-analysis and to speculate on the formation of different compounds as reaction products.  相似文献   

2.
Abstract

Titanium/silicon carbide fibre composites offer an excellent combination of weight specific properties and are ideal for many components in gas and steam turbine engines. However, potential industrial applications are hampered by the relatively high cost of the materials. This paper critically examines the characteristics of various manufacturing or processing routes for such composites, including well developed processes, such as foil–fibre–foil, physical vapour deposition, and vacuum plasma spraying, and new slurry powder metallurgy processes currently being developed. For a given manufacturing route, composite properties are enhanced if the material possesses uniform fibre distribution and a low oxygen content and is free from fibre/matrix interface reactions, residual voids, and fibre damage. The capabilities of the above processes in satisfying these requirements are compared and discussed. Possibilities of reducing product costs are analysed. Several ways of improving the cost effectiveness of mamifacturing such composites are outlined.  相似文献   

3.
4.
《Composites Part A》2002,33(10):1381-1385
A single fibre Ti/SiCf composite sample was loaded incrementally and unloaded in-situ on a beam line at the European Synchrotron Research Facility (ESRF) in Grenoble. It was possible to measure the strain along the fibre with a high spatial resolution (50 μm) within the titanium matrix. The interfacial frictional shear strength inferred from the longitudinal strain profile of the broken fibre was calculated to be around 200 MPa. The result is compared to the interfacial shear stress derived from other methods developed to evaluate the matrix/reinforcement interface in this system. An axisymmetric finite element model gave good agreement between the numerical and experimental results.  相似文献   

5.
Abstract

Ternary carbide Ti3 SiC2 was first synthesised through a pulse discharge sintering (PDS) technique from mixtures of Ti, SiC, and C with different molar ratios. Sintering processes were conducted at 1200 – 1400°C for 15 – 60 min at a pressure of 50 MPa. The phase constituents and microstructures of the synthesised samples were analysed by X-ray diffraction (XRD) technique and observed by scanning electron microscopy (SEM). The results showed that, for samples sintered from 3Ti/SiC/C powder at 1200 – 1400°C, TiC is always the main phase and only little Ti3 SiC2 phase is formed. When the molar ratios Ti : SiC : C were adjusted to 3 : 1.1 : 2 and 5 : 2 : 1, the purity of Ti3 SiC2 in the synthesised samples was improved to about 93 wt-%. The optimum sintering temperature for Ti3 SiC2 samples was found to be in the range 1250 – 1300°C and all the synthesised samples contain platelike grains. The relative density of Ti3 SiC2 samples was measured to be higher than 99% at sintering temperatures above 1300?C. It is suggested that the PDS technique can rapidly synthesise ternary carbide Ti3 SiC2 with good densification at lower sintering temperature.  相似文献   

6.
7.
The polytypic transformations occurring during hot-pressing from 1600 to 2100°C of cubic silicon carbide containing 2 wt.% Al2O3 have been studied by x-ray diffraction. The 6H and 4H polytypes are formed at 1800 and 1900°C respectively. Above 2000°C, the cubic (3C) phase is not stable and disappears. Theoretical patterns of the 3C, 2H, 4H and 6H polytypes were generated by computer and used in the analysis of the experimental data.  相似文献   

8.
9.
以经表面处理的石墨、单向炭布、和沥青粉为原料,通过热压烧结制备炭布叠层C/C复合材料.考察了炭布含量对材料密度、孔隙率、弯曲强度以及摩擦磨损的影响,采用MM200摩擦磨损试验机进行了环-块摩擦磨损实验,并借助SEM表征了材料的弯曲断口和磨痕形貌.结果表明:当炭布质量分数为50%时,C/C复合材料的综合性能最好,抗弯强度为112.2MPa,密度为1.72 g/cm3,摩擦系数为0.28,磨损率为3.68×10-13 m3·N-1·m-1.弯曲实验中材料呈“假塑性”方式破坏,断口出现大量纤维的拔出.石墨相含量的增加有利于形成较好的摩擦膜,降低磨损率,保持摩擦系数稳定.  相似文献   

10.
We have evaluated the interfacial reactions of SiC fibre reinforced Al electrical power cable using low oxygen SiC fibre (Si : 62.4, C : 37.1, 0 : 0.5 mass%), and determined the relationship between the tensile strength and the amount of reaction products at the interface. The following are occurring at the SiC/Al interface: i) diffusion of Al atoms into the SiC fibre, ii) formation of needle–shape Al4C3 compounds, and iii) formation of Al9Si compounds. Formation of Al4C3 and Al9Si compounds at the interface causes the strength of SiC/Al composite electric power cable to deteriorate.  相似文献   

11.
12.
SiC (SCS-6TM) continuous fibre/SiC composites were fabricated by hot-pressing at 1700°C in vacuum using an Al sintering additive. Analytical transmission electron microscopy was used to investigate the microstructure of the composites. The room-temperature mechanical and high-temperature creep properties of the composites were investigated by four-point bending. The SiC powders used were sintered at a relatively low sintering temperature to high density (97% of theoretical density) with the addition of the Al sintering additive. It is believed that the Al additive is very efficient for the densification of SiC. The SiC fibres maintained their original form and microstructure during fabrication. The SiC matrix reacted with the outermost carbon sublayer in the fibre, forming a thin (1.8–4.8m) interfacial layer, which was composed of Al4C3, Si–Al–C, and Si–Al–O phases. The incorporation of SiC fibre into a dense SiC matrix significantly increased the room-temperature failure strain and improved the high-temperature creep properties. In addition, the incorporation of SiC fibre into a porous SiC matrix increased the room-temperature failure strain, but did not contribute to the high-temperature creep properties.  相似文献   

13.
14.
以天然鳞片石墨为起始原料,SiC颗粒为增强相,采用热压烧结工艺制备了SiC增强石墨复合材料。研究了SiC含量对SiC增强石墨复合材料微观结构、力学性能和摩擦性能的影响。结果表明:SiC颗粒均匀分布在石墨基体中,降低了基体中的孔隙率;随着SiC含量增加,SiC增强石墨复合材料的相对密度和弯曲强度相应增加,开孔率显著降低,当SiC含量达到40vol%时,SiC增强石墨复合材料中形成了SiC网络骨架结构,相对密度达到了94.2%,比商品高强纯石墨材料提高了11.8%,弯曲强度达到了146 MPa,比商品高强纯石墨材料提高了147%;基体石墨保持了层状结构;SiC含量低于40vol%时,SiC增强石墨复合材料的摩擦系数随SiC含量的增加轻微增加,与纯石墨材料的摩擦系数相当,具有良好的摩擦性能。  相似文献   

15.
A high density Ti3SiC2/20 vol % SiC composite was hot pressed under a uniaxial pressure of 45 MPa for 30 min in an Ar atmosphere at 1600 °C. The grain size of the Ti3SiC2/SiC composite was finer than that of monolithic Ti3SiC2, though the composite was hot pressed at a higher temperature, due to the dispersion of SiC particles in the Ti3SiC2 matrix. Room temperature fracture toughness of the composite and Vickers hardness were measured as 5.4 MPa m1/2 and 1080 kg mm–2, respectively. A higher flexure strength of the composite compared to that of monolithic Ti3SiC2 was measured both at room temperature and up to 1200 °C. At 1000 °C, the composite showed a lower oxidation rate than that of monolithic Ti3SiC2.  相似文献   

16.
17.
18.
Fabrication of monolithic Ti3SiC2 has been investigated through the route of reactive sintering of Ti/Si/2TiC mixtures. Significant phase differences existed between the surface and the interior of as-synthesized products due to the evaporation of Si during the reaction process. The use of a 3Ti/SiC/C mixture as a powder bed could control the evaporation of Si and develop monolithic Ti3SiC2. A reaction model for the formation of Ti3SiC2 in the Ti/Si/2TiC system is discussed.On leave from  相似文献   

19.
Wen Huang  Xu Nie  Yuanming Xia   《Composites Part A》2003,34(12):246-1166
In order to investigate the effect of strain rate and high temperature exposure on the mechanical properties of the fibre in the unidirectional fibre reinforced metal-matrix composite, in situ SiC fibre bundles are extracted from two kinds of SiC/Al composite wires, which are heat-treated at two different temperatures (exposed in the air at 400 and 600 °C for 40 min after composition). Tensile tests for these two fibre bundles are performed at different strain rates (quasi-static test: 0.001 s−1, dynamic test: 200, 700, and 1200 s−1) and the stress–strain curves are obtained. The experimental results show that their mechanical properties are rate-dependent, the modulus E, strength σb and unstable strain b (the strain corresponding to σb) all increase with increasing strain rate. Compared with the mechanical properties of the original SiC fibre, those of the two in situ fibres degrade to some extent, the degradation of the in situ fibre extracted from the composite wire exposed at 600 °C (hereafter referred to as in situ fibre 2) is more serious than that of the in situ fibre extracted from the composite wire exposed at 400 °C (hereafter referred to as in situ fibre 1). The mechanism of the degradation is investigated. A bi-modal Weibull statistical constitutive equation is established to describe the stress–strain relationship of the two in situ fibre bundles. The simulated stress–strain curves agree well with the experimental results.  相似文献   

20.
采用化学镀Cu的TiB2粉和Ti3SiC2粉与cu粉进行湿混,通过真空无压烧结法制备TiB2增强的Cu-Ti3SiC2复合材料.研究了其致密度、硬度随TiB2含量变化的规律.因为TiB2镀Cu和Ti3SiC2镀Cu改善了它们与Cu的湿润性而提高了相互之间的结合强度,从而提高了TiB2增强cu-Ti3SiC2复合材料的效果.结果表明,在Ti3SiC2含量为20%(体积分数),烧结温度为950℃时制备Cu/Ti3SiC2/TiB2的复合材料致密性最好,硬度最高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号