首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

2.
This paper investigates the attitude control of spacecraft in the presence of unknown mass moment of inertia matrix, external disturbances, actuator failures, and control input constraints. A robust adaptive controller is proposed with the utilization of fuzzy logic and backstepping techniques. The unit quaternion is employed to describe the attitude of spacecraft for global representation without singularities. The system uncertainty is estimated by introducing a fuzzy logic system. The adaptive mechanism has only two parameters to be adapted on-line because the adaptive law of the proposed controller is derived from the norm of the weight matrix. The stability of the closed-loop system is guaranteed by Lyapunov direct approach. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of parametric uncertainties, external disturbances, actuator failures, and control input constraints.  相似文献   

3.
线性自抗扰控制的抗饱和补偿措施   总被引:1,自引:0,他引:1  
周宏  谭文 《控制理论与应用》2014,31(11):1457-1463
控制输入约束是实际工业过程中普遍存在的现象,然而控制器设计中通常都假设执行机构动态是线性的,因此当执行机构存在约束时,执行机构输出信号与控制器输出信号不一致,使系统的动态性能降低,甚至导致系统不稳定.本文针对线性自抗扰控制(linearactive disturbance rejection control,LADRC)执行机构的约束问题,提出两种抗饱和补偿方案,利用LADRC扩张状态观测器估计控制器状态或者控制器输出与执行器输出的误差,从而使LADRC能快速消除饱和.将这两种方法用到含执行机构饱和的一阶惯性加迟延被控对象进行仿真研究,结果表明两种补偿措施下线性自抗扰控制器能得到较好的控制性能.随后本文将LADRC抗饱和思想推广到负荷频率控制系统(load frequency control,LFC)中,仿真表明基于误差补偿的抗饱和方案对于LFC系统更为有效.  相似文献   

4.
马壮  方一鸣  许淼  李强 《控制与决策》2023,38(2):413-420
针对伺服电机驱动的连铸结晶器控制系统执行器输入饱和和状态受限问题,同时考虑系统存在负载扰动、参数摄动等不确定性问题,提出一种基于扩张状态观测器的跟踪误差预设性能反步控制策略.首先,针对执行器输入饱和问题,建立系统的数学模型;然后,采用一种线性扩张状态观测器实时观测系统时变负载扰动、参数摄动等不确定性,并对观测误差的收敛性进行分析;接着,针对伺服电机电流饱和与跟踪误差预设性能控制问题,通过引入辅助状态变量确保系统跟踪误差限定在允许范围内,设计基于扩张状态观测器的反步(Backstepping)控制器;最后,根据Lyapunov稳定性理论证明闭环系统的稳定性,并通过系统仿真验证所提出控制策略的有效性.  相似文献   

5.
An input-output linearization strategy for constrained nonlinear processes is proposed. The system may have constraints on both the manipulated input and the controlled output. The nonlinear control system is comprised of: (i) an input-output linearizing controller that compensates for processes nonlinearities; (ii) a constraint mapping algorithm that transforms the original input constraints into constraints on the manipulated input of the feedback linearized system; (iii) a linear model predictive controller that regulates the resulting constrained linear system; and (iv) a disturbance model that ensures offset-free setpoint tracking. As a result of these features, the approach combines the computational simplicity of input output linearization and the constraint handling capability of model predictive control. Simulation results for a continuous stirred tank reactor demonstrate the superior performance of the proposed strategy as compared to conventional input-output linearizing control and model predictive control techniques.  相似文献   

6.
This article investigates the robust adaptive control system design for the longitudinal dynamics of a flexible air‐breathing hypersonic vehicle (FAHV) subject to parametric uncertainties and control input constraints. A combination of back‐stepping and nonlinear disturbance observer (NDO) is utilized for exploiting an adaptive output‐feedback controller to provide robust tracking of velocity and altitude reference trajectories in the presence of flexible effects and system uncertainties. The dynamic surface control is introduced to solve the problem of “explosion of terms.” A new NDO is developed to guarantee the proposed controller's disturbance attenuation ability and to performance robustness against uncertain aerodynamic coefficients. To deal with the problem of actuator saturation, a novel auxiliary system is exploited to compensate the desired control laws. The stability of the presented NDO and controller is analyzed. Simulation results are given to demonstrate the effectiveness of the presented control strategy.  相似文献   

7.
8.
This study is concerned with the bumpless transfer problem for switched systems with partial actuator failures, in order to obtain smooth system performance output transition. Taking into account that the system requires a controller switching from current sub-controller to a fault-tolerant sub-controller after actuator fault. And bumpless transfer for control input cannot be traditionally designed when the actuator fault occurs, while performance smoothing can be considered and it is actually the ultimate goal of bumpless transfer. Specifically, the actuator fault model is firstly established and partial actuator fault is considered. Then, the system performance output signal is deemed as the main design variable of bumpless transfer, and closed-loop control systems both previous and after controller switching are constructed. Moreover, by using model matching thought and the adaptive sliding mode control technique, a bumpless transfer compensator design strategy is given to drive the performance output variable (after controller switching) to track the one of reference model. At last, simulation results of numeric and application examples demonstrate the effectiveness of the proposed bumpless transfer strategy.  相似文献   

9.
This paper is concerned with the design of a robust adaptive tracking control scheme for a class of variable stiffness actuators (VSAs) based on the lever mechanisms. For these VSAs based on the lever mechanisms, the AwAS‐II developed at Italian Institute of Technology (IIT) is chosen as the study object, and it is an enhanced version of the original realization AwAS (actuator with adjustable stiffness). Firstly, for the dynamic model of the AwAS‐II system in the presence of parametric uncertainties, unknown bounded friction torques, unknown bounded external disturbance and input saturation constraints, by using the coordinate transformations and the static state feedback linearization, the state space model of the AwAS‐II system with composite disturbances and input saturation constraints is transformed into an uncertain multiple‐input multiple‐output (MIMO) linear system with lumped disturbances and input saturation constraints. Subsequently, a combination of the feedback linearization, disturbance observer, sliding mode control and adaptive input saturation compensation law is adopted for the design of the robust tracking controller that simultaneously regulates the position and stiffness of the AwAS‐II system. Under the proposed controller, the semi‐global uniformly ultimately bounded stability of the closed‐loop system has been proved via Lyapunov stability analysis. Simulation results illustrate the effectiveness and the robustness of the proposed robust adaptive tracking control scheme.  相似文献   

10.
针对具有控制约束的网络控制系统(Networked Control Systems,NCS)的特点,建立了具有外部扰动的网络控制系统模型,对其H∞性能加以分析和研究,并验证所取得的理论成果.假设具有控制约束的网络控制系统的H∞控制器与执行器均为事件驱动,传感器为时间驱动,且网络诱导时延小于传感器的采样周期,然后将此类网络控制系统的广义被控对象建模为一类线性离散系统,运用Lyapunov函数和线性矩阵不等式(LMI),导出闭环系统渐近稳定且满足给定H∞性能指标的充分条件,并给出了控制器的具体求法.得到了系统的H∞控制器存在条件及具体方法,通过设计该控制器,使具有外部扰动的网络控制系统的性能有很大的改善,通过Matlab仿真证明该控制器行之有效.  相似文献   

11.
王娟  刘志远  陈虹  于树友  裴润 《自动化学报》2007,33(11):1176-1181
This paper addresses the H∞ output feedback control problem for discrete-time systems with actuator saturation. Initially, a constrained H∞ output feedback control approach is presented in the framework of linear matrix inequalities (LMI) optimization. Under certain assumptions on the disturbance energy bound, closed-loop H∞ performance is achieved. Furthermore, the moving horizon strategy is applied to an online management of the control performance so that the closed-loop system can satisfy control constraints in the case of unexpected large disturbances. A dissipation constraint is derived to achieve the moving horizon closed-loop system dissipative. Simulation results show that the constrained H∞ controller works effectively under the disturbance assumption and that the moving horizon H∞ controller can trade-off automatically between satisfying control constraints and enhancing performance.  相似文献   

12.
本文针对四旋翼无人机研究了鲁棒反步姿态控制策略.由于四旋翼无人机结构复杂,其非线性数学模型难以精确建立,因此在控制器设计过程中需要综合考虑模型不确定性、未知外部干扰、输入饱和以及姿态受限等因素.针对模型中的不确定项,使用神经网络进行逼近;对于外部未知干扰,使用非线性干扰观测器进行补偿;使用双曲正切函数逼近饱和函数,解决输入饱和问题;同时使用界限Lyapunov函数设计控制器,确保姿态满足限制条件.最后,设计四旋翼无人机反步姿态控制器,并根据Lyapunov稳定性定理证明了闭环控制系统的有界稳定.仿真结果表明了所研究控制方法的有效性.  相似文献   

13.
In this article, considering actuator constraints and possible failures, an adaptive compensation control scheme is developed to realize tracking control for a class of uncertain nonlinear systems with quantized inputs. A new variable is generated to evaluate the effect of actuator saturation and is used in the process of controller design to compensate for the influence of actuator saturation constraint. Moreover, the controller is able to show certain accommodation capability to tolerate possible actuator failures and input quantization error via integrating parameter update process of unknown fault constants into adaption of parametric uncertainties under the backstepping procedure. Specifically, actuator saturation effect and possible actuator failures as well as input quantization error can be dealt with uniformly under the framework of the proposed scheme and the control system has certain robustness to external disturbances. It is proved that all the signals of the closed‐loop system are ensured to be bounded and the tracking error is enabled to converge toward a compact set, which is adjustable by tuning design parameters. Finally, experiments are carried out on an active suspension plant to illustrate the effectiveness of the proposed control scheme.  相似文献   

14.
针对轧机液压伺服系统随工况变化而存在的弹性负载力和外负载力跳变所引起的结构跳变问题,建立并优化了考虑控制输入饱和特性的、系统连续工作时不同工况下的轧机液压伺服系统被控对象的多模型集.对每一模型采用线性矩阵不等式(LMI)方法设计了抗饱和状态反馈控制器,并制定了整个系统的切换策略,分析了具有饱和输入和外部扰动的切换系统的...  相似文献   

15.
This study presents an adaptive nonlinear information fusion preview control (NIFPC) method for trajectory tracking of autonomous surface vessels (ASVs) subject to system uncertainty, measurement noise, and unknown input saturations. The NIFPC is developed based on the nonlinear information fusion estimation methodology, in which the system's future reference trajectory information, noise information, performance index requirements, and system dynamic model are all transformed into information equations related to control input, and then the current control action is obtained by fusing these previewed future information via the nonlinear information fusion optimal estimation. In order to avoid the unknown input saturation constraints, a fuzzy asymmetric saturated approximator (FASA) is designed and integrated into the controller, where the fuzzy logic system (FLS) is used to adaptively adjust the key boundary parameters of the approximator. As a result, the negative effects caused by system uncertainty and measurement noise can be effectively suppressed, while the completely unknown input saturation constraints in the system actuator are guaranteed not to be violated. The convergence of the tracking errors of the closed-loop system is guaranteed via Lyapunov stability theory. Numerical simulation results have been provided to demonstrate the satisfactory performance of the proposed control scheme.  相似文献   

16.
This article presents an approximated scalar sign function-based digital design methodology to develop an optimal anti-windup digital controller for analogue nonlinear systems with input constraints. The approximated scalar sign function, a mathematically smooth nonlinear function, is utilised to represent the constrained input functions, which are often expressed by mathematically non-smooth nonlinear functions. Then, an optimal linearisation technique is applied to the resulting nonlinear system (with smooth nonlinear input functions) for finding an optimal linear model, which has the exact dynamics of the original nonlinear system at the operating point of interest. This optimal linear model is used to design an optimal anti-windup LQR, and an iterative procedure is developed to systematically adjust the weighting matrices in the performance index as the actuator saturation occurs. Hence, the designed optimal anti-windup controller would lie within the desired saturation range. In addition, the designed optimal analogue controller is digitally implemented using the prediction-based digital redesign technique for the effective digital control of stable and unstable multivariable nonlinear systems with input constraints.  相似文献   

17.
A new hybrid electro‐hydraulic and pneumatic actuator system and its dynamic model for high‐performance control are presented. This work focuses on tracking control of rapidly changing acceleration that is an advanced area with various practical applications in industries. The impact motion control of the actuator is one of challenging task due to the system instability during the transition state. Since composite disturbances derived from the inaccurate and unmodeled dynamics considerably reduce the control performance. A novel structure of variable integral sliding mode controls integrated with a sliding mode disturbance observer is proposed based on the super‐twisting algorithm. With the control strategy, not only does the controller overcome the extreme sensitivity of the system during rapid movements, but it also eliminates the internal parameter uncertainties and external load disturbance while tracking rapid gain‐scheduled acceleration. The results of the numerical simulation and field experiment are presented to assess the effectiveness of the proposed control scheme.  相似文献   

18.
潘腾  姜顺  潘丰 《信息与控制》2023,52(1):104-114
针对一类存在执行器故障和部分解耦扰动的离散时间网络化控制系统,研究测量数据随机丢失情况下的主动容错控制问题。首先,通过模型转换将原系统化为一个与之等价的状态增广系统;然后在考虑测量数据发生随机丢失情况下,构造未知输入观测器(unknown input observer, UIO)实现对系统状态与故障的联合估计,再基于状态和故障的在线估计值,设计基于信号补偿的容错控制律实现对原系统的主动容错控制。在该容错控制算法中,观测器与控制器增益的存在性条件均可利用李雅普诺夫稳定性理论对误差系统进行随机分析得到,相应的估计器和控制器参数可通过在线求解具有凸约束的矩阵不等式获得。最后,通过一个喷气式发动机模型的仿真算例验证所提出的故障估计与主动容错控制方法的有效性。  相似文献   

19.
具有执行器容错的汽车主动悬架系统有限频率H∞控制   总被引:1,自引:0,他引:1  
本文研究了一类具有执行器容错的主动悬架系统有限频率H_∞控制问题.运用广义的Kalman-Yakubovich-Popov(KYP)引理,设计了有限频率H_∞控制器.该控制器不仅能够最大程度地减少路面在4~8 Hz范围内对乘客的影响,还能够保证汽车的悬架行程和车轮的动静载之比在它们允许的范围内.因此所设计的有限频率H_∞控制器不仅能够保证汽车驾驶的舒适性还能够保证汽车驾驶的安全性.为了解决系统状态不完全可测的问题,本文采用了动态输出反馈控制器策略.除此之外,在控制器的设计过程中还考虑了主动悬架系统的参数不确定性以及执行器随机故障的现象.最后,本文基于四分之一汽车主动悬架系统验证了控制器的有效性.  相似文献   

20.
永磁球形电机轨迹跟踪控制方法常常利用高增益的控制输出来保证系统的鲁棒性及跟踪控制的快速性.但这种保守控制会带来较大的控制作用,甚至导致执行器饱和.为了减少控制的保守性,本文设计了一种带有非线性干扰观测器的模糊滑模控制器来解决球形电机的轨迹跟踪问题.利用干扰观测器对不确定性、摩擦、外界干扰、负载扰动等进行估计,并在控制输入端进行补偿实现对干扰的抑制.并利用滑模控制器抵消干扰观测器的干扰观测误差及不可观测部分的干扰,为了减少滑模的抖振,本文利用模糊逻辑对该部分进行逼近,并利用模糊的输出增益代替滑模的切换增益.此外通过Lyapunov方程证明了本文控制器的稳定性.仿真结果表明在存在模型不确定性及各种干扰的情况下,本文的轨迹跟踪控制具有良好的动静态性能和少保守性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号