首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用光伏效应直接将太阳能转化为电能,是获取可持续清洁能源的重要途径之一。近年来,钙钛矿太阳能电池成为光伏领域的研究热点,随着结构调控和制备工艺的不断发展,目前其光电转换效率已经突破25%。虽然钙钛矿光伏器件具有制备条件温和、成本低、效率高等优点,但该类光伏器件呈现出秒量级甚至分钟量级的慢速动力学现象,这对钙钛矿光伏器件性能以及正确认识光电转换动力学造成较大的影响。迄今对慢速动力学的认识仍处于猜测阶段,尚缺乏系统认识。其中离子迁移和缺陷态属性被当作慢速动力学的主要研究目标。本文从钙钛矿光伏器件原初的电荷分离开始,分析了钙钛矿太阳能电池在多时间跨度内的载流子动力学行为;讨论了可能造成钙钛矿光伏器件慢速动力学的原因,认为可以从关键的钙钛矿活性层切入;揭示了钙钛矿活性层结构对慢速动力学的影响机理;为全新认识钙钛矿太阳能电池光电转换过程提供新思路,从而进一步指导器件设计和制备。  相似文献   

2.
新型太阳能电池包括有机太阳能电池、钙钛矿太阳能电池和量子点太阳能电池等,是一类十分有前景的光伏器件,目前有机太阳能电池和钙钛矿太阳能电池的能量转换效率分别超过了19%和25.6%。富勒烯材料具有较高的电子迁移率和良好的电子特性,被广泛应用于有机太阳能电池活性层、界面层,钙钛矿太阳能电池活性层和中间层等。在有机太阳能电池中,富勒烯材料作为活性层受体,可以提高器件电子传输能力;作为界面修饰层,可以有效降低接触电阻,抑制载流子的复合。在钙钛矿太阳能电池中,富勒烯材料作为活性层添加剂能钝化钙钛矿缺陷,抑制迟滞效应;作为中间层能优化界面形貌,促进电荷的提取与输运。本文综述了富勒烯材料在各个组成部分中的研究进展,并展望了富勒烯材料在各个组成部分中的发展前景,在此基础上,提出了未来的研究方向。  相似文献   

3.
倒置钙钛矿太阳能电池(PSCs)具有器件结构简单、吸光系数高、迟滞效应小、良好的缺陷容忍性等优点,受到了广泛的关注。但倒置器件光电转换效率(PCE)尚有待提高,究其原因是空穴传输层(HTL)和钙钛矿层界面处的能量损失表现出相对较小的开路电压。文章综述了包括有机聚合物、无机物、尖晶石氧化物等作为空穴传输材料的相关研究进展,进一步分析了通过调节电极/空穴传输层能级使之与钙钛矿价带匹配,及通过界面修饰促进器件对载流子的注入与收集,从而提高光电转换效率的研究现状。对提高倒置钙钛矿太阳能电池性能的研究具有一定的指导意义,最后对倒置器件的应用前景进行了展望。  相似文献   

4.
在一步旋涂制备钙钛矿活性层的过程中,通过无/有溶剂氯苯的处理,探究反溶剂法制备的平面钙钛矿太阳能电池的光伏性能。利用SEM、XRD、J-V以及IPCE对对照组和反溶剂制备的钙钛矿薄膜和器件进行表征。结果表明反溶剂法获得的平面钙钛矿太阳能电池的光电转换效率高达16.05%,比对照组效率提高了31.44%。瞬态光电压的结果也揭示了其背后的载流子寿命较长,表明反溶剂法制备的器件内的载流子复合得到有效抑制。  相似文献   

5.
近年来钙钛矿材料因其优异的光电性能而成为光伏领域的研究热点, 但调控钙钛矿太阳电池内界面缺陷仍是亟需解决的关键问题之一。本研究在溶液两步法制备钙钛矿光吸收层的过程中引入有机小分子添加剂(L-3-(4吡啶基)-丙氨酸(L-3-(4-pyridyl)-alanine, (PLA))。测试结果显示引入PLA可提高器件的各光电性能参数, 含PLA器件的最优能量转换效率为21.53%, 而参照器件为20.10%。进一步研究表明引入PLA可延长荧光寿命, 降低器件的陷阱态密度(从5.59×1016cm-3降至3.40×1016cm-3), 促进界面电荷抽取, 抑制载流子复合。器件性能的提升是由于PLA促进PbI2在钙钛矿薄膜晶界处富集及PLA在界面处锚定起到了钝化缺陷的作用。本研究可以为进一步调控钙钛矿太阳电池的缺陷提供借鉴。  相似文献   

6.
有机-无机杂化钙钛矿太阳能电池(PSCs)具有高能量转换效率、低能耗和低成本等优点,但PSCs界面缺陷引起的非辐射复合严重阻碍了其光电转换性能提升。本研究通过降低氧化镍空穴传输层的粒径尺寸,提高粒径均匀性,实现了光生空穴在电池界面的高效传输;并通过优化钙钛矿薄膜的反溶剂作用时间提升结晶质量,降低界面非辐射复合,改善空穴传输层和钙钛矿的界面问题,使钙钛矿太阳能电池的能量转换效率(PCE)从10.11%提高到18.37%。开尔文探针力显微镜(KPFM)研究表明,界面优化后的钙钛矿薄膜在亮态下的表面接触电位差相比于暗态下增加了120.39 mV。采用压电力原子力显微镜(PFM)分析钙钛矿薄膜明暗态铁电性能,发现界面优化后的钙钛矿铁电极化变化微弱,说明优化界面有效降低了电池界面缺陷和迟滞效应。该研究结果表明,优化氧化镍空穴传输层,提高钙钛矿薄膜质量,减少了界面缺陷,降低了非辐射复合和电池迟滞效应,提高了钙钛矿太阳能电池的能量转换效率。  相似文献   

7.
王耀武  王彬彬 《材料导报》2024,(10):224-234
近年来,反式结构的钙钛矿太阳能电池凭借制备工艺简单、可低温成膜、迟滞效应低、适合与传统太阳能电池结合制备叠层器件等优点,受到了人们广泛的关注,经过几年的发展,反式钙钛矿太阳能电池的光电转化效率已从3.9%提升到25.37%。其中电子传输层作为钙钛矿太阳能电池的重要组成部分,在提取和运输载流子、阻挡空穴、调节界面能级结构和抑制电荷复合等方面起着关键性的作用。一些有机材料(富勒烯及其衍生物、苝二酰亚胺、萘二酰亚胺等)凭借容易合成和纯化、能级可调、电子迁移率高、溶解性好、化学/热稳定性良好等优势,已经广泛应用于反式钙钛矿太阳能电池。本文主要介绍了不同有机电子传输材料在反式钙钛矿太阳能电池中的研究现状,还介绍了电子传输层掺杂和界面修饰两种提升器件性能的改性手段,旨在为开发全新的有机电子传输材料提供基础性的理论指导。  相似文献   

8.
李博  徐晓婷  郑雪晴 《材料导报》2018,32(23):4116-4124
近年来,离子液体因具有不易挥发、性质稳定、透光性好、导电率高、可设计性,以及易于在界面处形成双电层等物理化学性质,而展现出广阔的应用潜力和前景,逐渐成为国际科学研究的前沿和热点之一。其中,将离子液体应用于染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)、钙钛矿太阳能电池和有机光电探测器等有机光电转换器件的研究备受关注。 在有机光电转换器件中,离子液体在染料敏化太阳能电池方面的应用最为广泛且完善。高效DSSCs主要是基于有机溶剂的液态电解质结,但有机溶剂在带来较高光电转换效率的同时,其本身存在的易挥发汽化、光热稳定性差等缺点,导致DSSCs的器件寿命与长期稳定性受到影响,离子液体的引入能有效解决以上问题。此外,离子液体还以电子传输层以及界面修饰层的形式引入,具有高电荷迁移率、低功函数以及高稳定性等优点,能在一定程度上改善器件的短路电流、填充因子和光电转换效率等。因此,离子液体成为在DSSCs的实际应用中兼具性价比高、封装难度低、性能好、稳定性高四大优点的辅助材料。在钙钛矿太阳能电池方面,离子液体的低功函数和高电子迁移率以及一些特殊性质如钝化反应、黏度效应等,都能够实现对电子萃取率、电荷转移电阻、钙钛矿结晶情况等方面的控制以满足实际设计要求,进而有助于钙钛矿太阳能电池的光电转换效率、填充因子等性能指标不同程度的提升。在有机光电探测器方面,引入的离子液体能促使在与之接触的界面处形成双电层,双电层的形成及离子液体的高导电率使得入射光不必照射有机光电探测器上下电极的重叠区域仍旧可以产生较大的光电流输出,从而可以有效摆脱有机光电探测器对电极材料透光性要求的局限性。同时双电层的形成还将促进有机光电探测器工作层中的电荷分离,进一步提高有机光电探测器的响应率。 本文主要从染料敏化太阳能电池、钙钛矿太阳能电池、有机光电探测器三个方面,综述了离子液体在有机光电转换器件中的国内外应用研究进展,就离子液体对提升有机光电转换效率及其实现器件新功能的工作机理进行了详细分析,并对其未来的应用研究方向进行了展望,为今后进一步设计出更适合有机光电转换领域应用的离子液体提供参考。  相似文献   

9.
晶界处的深能级缺陷和严重的卤素离子迁移对进一步提高钙钛矿太阳能电池的稳定性和效率以及消除迟滞现象提出了严峻的挑战.本文报道了一种大尺寸强配位的有机阴离子晶界锚定策略来抑制离子迁移并钝化薄膜缺陷.本策略通过将含有大尺寸有机阴离子的钾盐(4-磺基苯甲酸单钾盐, SAMS)加入到钙钛矿前驱液中来实现.研究表明,阴离子两端的C=O和/或S=O能够与未配位的Pb2+离子和/或卤化物空位之间发生强配位作用,阴离子中的–OH能够与甲脒阳离子形成氢键,以上化学作用使阴离子紧紧锚定在晶界处. SAMS不仅能够钝化浅能级缺陷,而且能够更有效地钝化深能级缺陷.该晶界锚定策略能降低钙钛矿薄膜的缺陷密度、延长载流子寿命和抑制离子迁移,提高电池的效率和稳定性以及消除迟滞效应.结果表明,基于SAMS改性的电池实现了22.7%的效率,而对照器件显示了20.3%的效率.未封装改性的器件在60℃加热老化1320小时后几乎没有发生衰减.  相似文献   

10.
近几年来, 钙钛矿电池发展迅速, 其单电池效率从最初的3.8%迅速提升至目前20.1%, 接近硅基太阳能电池的光电转换效率。TiO2、ZnO、Al2O3等诸多无机纳米金属氧化物材料作为重要的载流子输运材料与钙钛矿生长骨架也被广泛地应用于钙钛矿电池。依据钙钛矿电池功能结构的差异, 本文分别介绍了此类材料作为钙钛矿电池中的致密层及介孔层的制备方法, 并在此基础上介绍了基于表面修饰、掺杂、复合等氧化物的改性手段调节材料理化性能与氧化物/钙钛矿界面特性, 进而改进钙钛矿电池性能的方法。并阐述了进一步提高钙钛矿电池光电转换效率需要关注的重点问题及展望。  相似文献   

11.
<正>在国家双碳目标的引领下,新型钙钛矿材料在众多领域受到广泛关注。国家部委针对钙钛矿太阳能电池产业陆续出台了多个相关政策,为新型钙钛矿材料与光电器件的发展提供了有力支撑[1-2]。新型钙钛矿材料(如卤化物钙钛矿材料)具有光吸收系数大、带隙可调、光生电子能力强、载流子扩散距离长、双p/n型、高光致发光量子产率、发光半峰全宽窄等特点,也兼具铁电性、离子迁移可控和维度可调等显著优势[3-4],在光-电转换、电-光转换、  相似文献   

12.
丁统顺  丰平  孙学文  单沪生  李琪  宋健 《无机材料学报》2023,(9):1080-1083+98-102
有机-无机杂化钙钛矿具有高的光吸收系数、可调节的带隙以及双极性的电荷传导特性,是一种理想的光吸收材料。然而,溶液法制备的钙钛矿薄膜在表/界面上存在多种缺陷,会抑制载流子传输并引发复合。本研究选用含多官能团的氨基酸衍生物——9-芴甲氧羰基-L-苯丙氨酸-L-苯丙氨酸(Fmoc-FF-OH)作为添加剂来降低钙钛矿膜缺陷并抑制晶界上的载流子复合。结果表明,当Fmoc-FF-OH的浓度为0.6g·L–1时,钙钛矿薄膜的粒径从138nm增大到210 nm,缺陷态密度从2.46×1015 cm–3降低至2.17×1015 cm–3。同时,钙钛矿太阳能电池也表现出最优的性能,开路电压从1.05 V提升到1.10 V,器件的光电转化效率(PCE)从15.50%提升到17.44%。在220 h的稳定性测试中,器件的光电转化效率仍能维持初始的71%。  相似文献   

13.
经过十多年的发展,钙钛矿太阳能电池(PSCs)迅速实现了能量转换效率(PCE)从3.8%提高到25.7%的突破,在新一代光伏产业中具有显著的竞争力。钙钛矿太阳能电池的蓬勃发展不仅源于钙钛矿材料具有高光吸收系数、优异的载流子迁移率和可调节的直接带隙,还源于其简便且成本低廉的制造工艺。但是钙钛矿电池内部的缺陷问题,特别是钙钛矿层与底层界面处的缺陷是限制钙钛矿电池效率与稳定性进一步提升的一个瓶颈。通过有效的界面修饰,一方面可以提高钙钛矿的效率,另一方面可以提高器件的稳定性。本文从界面工程对钙钛矿性能的影响出发,着重介绍了埋底界面的修饰工作对钙钛矿电池效率与稳定性的影响,包含电子传输层(ETL)/钙钛矿界面与空穴传输层(HTL)/钙钛矿界面这两部分,通过对这两类埋底界面的有效改性修饰,器件的效率与稳定性显著提高。通过对比分析了各种材料与实验方法对钙钛矿器件整体性能和稳定性的影响,探索了一条有效改善器件性能的路径。最后,本文还对钙钛矿太阳能电池的前景进行了展望。  相似文献   

14.
带隙1.1~1.4eV的锡铅混合卤化物钙钛矿是单结太阳能电池光电转换效率(PCE)接近Shockley-Queisser(S-Q)理论效率极限值的理想材料。钙钛矿薄膜垂直方向上的化学组分梯度会通过影响能带结构影响载流子的传输和分离,因此对锡铅混合钙钛矿薄膜的结晶过程进行控制十分重要。本研究发现使用不同剂量的反溶剂制备锡铅混合钙钛矿会形成不同的垂直组分梯度,并且随反溶剂用量增大薄膜表面铅含量增加。调整溶剂组分可以控制锡铅混合钙钛矿的垂直组分梯度,增大溶剂中V(DMSO):V(DMF)可以形成底部富铅而表面富锡的垂直组分梯度。当铅基前驱液溶剂中V(DMSO):V(DMF)最优化为1:2时,相比于1:4的对照组,器件在标准光照条件下的开路电压从0.725V提高到0.769V,短路电流密度从30.95mA·cm–2提高到31.65 mA·cm–2,PCE从16.22%提升到接近18%。利用SCAPS软件数值模拟进一步证明了垂直组分梯度的必要性,当钙钛矿薄膜底部富铅、顶部富锡时,载流子在空穴传输层界面区域的复合有所减少,因而电池性能得到提升。  相似文献   

15.
钙钛矿太阳电池以其优异的性能和发展潜力而成为新能源领域研究热点, 但仍然存在缺陷密度大、稳定性差等不足。本研究通过实验对比多种常见氨基酸的掺杂效果后, 将小分子有机物L-精氨酸引入钙钛矿前驱体溶液, 并通过二元两步法制备钙钛矿太阳电池。L-精氨酸掺杂提升了器件的光电性能, 光电效率由18.81%提升到21.86%。L-精氨酸通过降低钙钛矿层缺陷密度(由4.83×1016 cm-3降低到3.45×1016 cm-3), 减少了载流子非辐射复合, 延长了载流子的平均寿命, 且钙钛矿晶粒尺寸增大、晶界减少、薄膜吸光能力增强且稳定性提升, 迟滞效应得到抑制。这是由于L-精氨酸的多种基团与钙钛矿材料作用钝化了缺陷造成的。本研究为钙钛矿太阳电池的性能优化提供了一种借鉴方法。  相似文献   

16.
陈健  缪卫峰  王吉林  郑国源  龙飞 《材料导报》2018,32(13):2151-2160, 2175
有机金属卤化物钙钛矿太阳能电池近几年来发展迅速,其器件认证光电转效率已达22.1%。同时,这类电池具有成本低廉、能量回收期短等优势,有望实现商业化应用。然而,钙钛矿吸光层本身在湿度较大、温度较高及光照等条件下不稳定,并且与其他功能层组装成器件时易引发电极腐蚀、深缺陷态等问题,使得器件不稳定性加剧。越来越多的文献报道了提升器件稳定性的方法,主要集中在:(1)从成分优化方面提升钙钛矿吸光层的稳定性;(2)从器件结构优化方面提升器件的稳定性。在成分优化方面,科研者们主要从钙钛矿ABX_3结构成分、结构维度和保护层的使用等角度提升钙钛矿材料的稳定性。(1)在满足容差因子t或八面体因子μ的条件下,将甲脒离子、铯离子等疏水或耐热基团引入ABX_3结构的A位中,而X位掺入溴离子或硫氰根离子能提升钙钛矿材料的抗湿性,或者整合单一位置优势得到混合位Cs_x(MA_(0.17)FA_(0.83))_(100-x)Pb(I_(0.83)Br_(0.17))_3不仅能提升材料的热稳定性,而且可使器件的转换效率提高至21.1%。(2)较低结构维度(主要为二维)钙钛矿材料的研究也获得了一定的进展,例如制得的BA_(0.05)(FA_(0.83)Cs_(0.17))_(0.95)Pb(I_(0.8)Br_(0.2))_3材料的湿度和光照稳定性优异。(3)疏水性能好、电荷传输能力优异的保护层如丁基膦酸4-氯化铵或苄胺等同样可增强钙钛矿吸光层的稳定性。在器件结构优化方面,研究者们分别从电子传输材料(如二氧化锡、镧掺杂锡酸钡等)、空穴传输材料(如CuGaO_2、酞菁铜等)和上电极(碳、铜等)等角度提升器件的稳定性。其中,(1)紫外光催化活性差、电子迁移率优异、能带结构适宜的镧掺杂锡酸钡组成的器件展现了优异的光照稳定性。(2)由化学和热稳定性优异的酞菁铜组成的器件也获得了良好的热稳定性和17.5%的转换效率。(3)优化上电极方面,将碳电极应用到大面积器件上时,器件呈现了良好的湿度和光照稳定性;而铜电极替换金或银电极时,器件的光电转换效率同样超过20%,并且其热和光照稳定性良好。本文主要从钙钛矿吸光层材料成分和器件结构两大角度梳理了关于提升器件稳定性的研究现状,分别对钙钛矿吸光层ABX_3的组分、钙钛矿材料的结构维度、其他功能层等优化方面提升器件稳定性的工作进行了综述。最后,结合现有的研究成果展望了有机金属卤化物钙钛矿太阳能电池的发展趋势。  相似文献   

17.
近年来,钙钛矿太阳能电池因具有较好的光电性能、较低的制造成本获得了大量的关注。有机—无机杂化钙钛矿材料中不稳定的有机成分用无机金属铯离子取代制备出的无机钙钛矿材料因具有优异的热稳定性得到了研究者的青睐,其中以CsPbI2Br为光活性层的无机钙钛矿太阳能电池具有很大的商业应用前景。本文从制备条件、离子掺杂、界面修饰等方面入手,系统地介绍了其研究进展,并展望了CsPbI2Br无机钙钛矿太阳能电池未来的发展方向。  相似文献   

18.
周瑾璟  钟敏 《复合材料学报》2022,39(5):1937-1955
铅卤钙钛矿太阳能电池因其优良的光电转换效率以及相对低廉的制备成本而受到广泛关注。然而铅卤钙钛矿太阳能电池的长期稳定性限制了其商业化的进程。界面非辐射复合导致铅卤钙钛矿太阳能电池产生能量损失、影响器件稳定性,是造成器件性能恶化的主要原因。界面工程作为一种有效的策略被用于抑制界面非辐射复合,在制备高效稳定的铅卤钙钛矿太阳能电池方面取得了切实的成效。本文阐述了铅卤钙钛矿太阳能电池的工作原理以及界面上的非辐射复合过程,分析了界面非辐射复合产生的原因,总结了近期n-i-p正式结构铅卤钙钛矿太阳能电池中界面工程的研究进展,讨论了其作用机制。基于目前铅卤钙钛矿太阳能电池中的界面工程发展现状,对其未来的发展方向进行了展望。  相似文献   

19.
彭家奕  夏雪峰  江奕华  邹敏华  王晓峰  李璠 《材料导报》2018,32(23):4027-4040, 4060
近年来,基于有机-无机杂化钙钛矿材料为光活性层构建的太阳能电池由于具有直接带隙、吸光系数高、激子束缚能低、激子和载流子扩散距离长,以及成本低、制备工艺简单、光电转换率高、易于实现大面积柔性器件等优点,而成为当今新型光伏技术中一颗耀眼的新星。在钙钛矿太阳能电池中,电荷传输层在提高光电转换效率、稳定性及寿命等方面扮演着非常重要的角色,其中无机电荷传输层因具有载流子迁移率高、稳定性好、制备工艺简单等优势越来越受到人们的关注。本文总结了无机电荷传输层在钙钛矿太阳能电池中的应用,详细介绍了各种无机电子/空穴传输层在钙钛矿太阳能电池中的研究进展,并对其发展趋势进行了展望。  相似文献   

20.
杨英  高菁  崔嘉瑞  郭学益 《无机材料学报》2015,30(11):1131-1138
钙钛矿太阳能电池由纳米晶致密层、钙钛矿型光活性层CH3NH3PbX3 (X= Cl、Br、I)、空穴传输层及对电极组成。其中光活性层吸光材料的种类及其成膜技术、空穴传输层材料类型及结构设计是影响钙钛矿太阳能电池光电性能的重要因素。本文结合钙钛矿太阳能电池近年来的最新研究进展, 对影响器件光电性能的关键因素: 光吸收层、空穴传输层、工艺参数以及结构设计等进行综述, 同时展望了钙钛矿太阳能电池未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号