首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
针对自动引导车(AGV)无线电能传输(WPT)系统中磁耦合机构偏移影响输出电压稳定的问题,在输出并联型LCC/Multi-S的基础上提出了一种新型三线圈结构的WPT系统。该系统采用一种新型类中国结(CK)线圈结构和DDQ线圈作为磁耦合机构,通过合理参数配置,不仅实现了与负载无关的恒压(CV)输出,并且实现了X方向、Y方向以及XY方向同时偏移时的CV输出。利用COMSOL有限元仿真工具对该磁耦合机构的互感特性进行了仿真分析,从理论上证明了系统在线圈偏移的工况下能够实现CV输出;最后,搭建了试验平台验证了理论分析的正确性和可行性。  相似文献   

2.
针对磁场耦合式无线电能传输(WPT)系统的线圈偏移和偏转所导致的耦合系数减小及传输能效性下降的问题,面向电动汽车无线充电应用场合,该文提出一种基于双层正交DD(DQDD)线圈的高抗偏移偏转WPT系统,DQDD线圈内部两对DD线圈易于解耦,而且两者激发的合成磁场呈周期性旋转分布,此特征使得DQDD线圈兼具抗偏移和抗偏转性能。给出了DQDD线圈的空间位置和导磁机构特征参数与耦合系数之间的作用规律,分析水平偏移、垂向偏移和垂向偏转三种情况下线圈互感的变化规律;构建基于双路逆变器-双路整流器的LCC-S谐振电路结构,推导同时具有发射线圈激励电流恒定并且系统输出电压不受负载影响的谐振元件参数配置条件,进而给出系统整体的传输效率。为了验证所提出的DQDD耦合机构抗偏移偏转性能和系统传输特性,搭建130mm间距的500W样机装置,在水平横向和纵向偏移±150mm,垂向偏转0~90°范围内,样机的耦合系数保持率均不低于40%,系统的传输效率均不低于80%。  相似文献   

3.
张鹏飞  龚立娇  马欣欣  杨彤  黄波 《电工技术学报》2024,(5):1256-1269+1283
为了实现具有恒压特性的双线圈无线电能传输(WPT)系统中补偿网络的优化设计,该文在变压器T网络模型基础上定义等效耦合系数kr与等效变比n1,为双线圈WPT系统的高阶补偿网络设计与分析提供一种新方法。首先建立变压器T网络等效模型,给出具有恒压特性的串联-串联(S-S)型双线圈WPT系统元件参数表达式。其次结合等效耦合系数与等效变比,提出具有可变增益恒压特性的串联/并联-串联(SP-S)型与串联/并联-串联/并联(SP-PS)型双线圈WPT系统的补偿网络参数确定的新方法。在此基础上,考虑寄生电阻对系统传输特性的直接影响,以WPT系统的电压增益稳定性与传输效率为指标,得出不同等效参数下传输特性表达式,推导出在线圈偏移情况下最佳等效参数kr与n1的表达式,为WPT系统的补偿网络的优化设计提供理论依据。最终通过实物实验验证所提系统的恒压输出特性及其参数设计方法的正确性和有效性。  相似文献   

4.
谢文燕  陈为 《电工技术学报》2022,37(6):1495-1512
针对无线电能传输(WPT)系统线圈相对位置偏移引起传输效率降低、输出电流不稳定和发射线圈过电流问题,提出一种抗偏移恒流输出型WPT系统及其参数配置方法.该系统将LCC-LCC和串联-串联(S-S)补偿网络进行输入串联和输出串联,并采用QDQPs磁耦合结构.在此基础上,通过合理的参数配置,不仅实现了与负载无关的恒流输出,...  相似文献   

5.
双发射单元无线电能传输(WPT)系统采用两个发射单元对系统进行供电,能够有效提升系统的抗偏移特性.首先对双发射单元的系统建立数学模型,从理论上分析了功率波动的影响因素.针对接收线圈横向偏移过程中互感变化影响因素进行了仿真分析,给出了一种耦合机构的设计方法,通过对发射线圈及接收线圈匝数进行优化选择,从而保证系统具有平稳的输出功率和较高的效率.最后搭建了一个双发射单元磁耦合WPT系统进行了实验验证,实验结果表明接收端在正负5 cm的偏移范围内系统输出功率仅变化2 W,系统效率保持在80%以上.  相似文献   

6.
目前无线电能传输(WPT)技术正在迅速发展,并广泛运用于各种电子设备.由于耦合结构的偏移会导致系统输出发生较大的变化,为扩宽WPT技术的应用范围,高抗偏移性是WPT技术不可缺少的特性.为完善WPT技术的抗偏移特性,这里提出了一种基于感应式能量传输(IPT)技术与电容式能量传输(CPT)技术的串联系统,通过优化系统结构,...  相似文献   

7.
传统的三相感应式电能传输系统的磁耦合机构存在严重的交叉耦合,影响系统效率。为了消除原副边线圈之间的交叉耦合,文中分析了三相串—串拓扑电路,利用DDQ结构线圈解耦的原理,在DDQ型线圈上增加一个与原DD线圈成90°放置的DD型线圈,使不同线圈间互感均为零,由此提出并设计了一种消除交叉耦合的三相感应式电能传输系统磁耦合机构。最后,搭建了一个3.3 kW的原理样机进行验证。实验表明,所设计的三相耦合机构的交叉耦合可以忽略,最高效率(直流—直流)可达95.61%,当系统偏移15%的情况下,内部的解耦被严重破坏时,系统效率发生下降,最大降低2.16%。实验结果表明该结构有效且可行,可适用于三相大功率传输。  相似文献   

8.
无线电能传输(WPT)技术因其采用非物理接触的方式传输电能,有效地解决了传统水下传能过程中漏水、漏电等问题,在水下用电设备中具有较好的应用前景.为此设计一种配有旋转式松耦合变压器(LCT)的笼状对接装置以实现水下无线传能,该装置可有效避免自动水下航行器(AUV)的径向偏移.鉴于互感为影响无线电能传输性能的重要参数,该文针对LCT的互感求解问题展开研究,运用毕奥萨伐尔定律建立该结构的互感计算模型.并以此为基础,从互感、耦合系数、输出功率、效率及副边长度等多维度参数分析轴向偏移对旋转LCT的影响,仿真结果表明,旋转式LCT的轴向抗偏移能力较强.最后,设计并开发了一套LCL_S型补偿结构的无线电能传输系统装置,实验结果验证了理论与仿真分析的正确性,具有一定的工程应用价值.  相似文献   

9.
感应式无线电能传输(inductive wireless power transfer, IPT)不可避免地受到磁耦合机构偏移的影响。在磁耦合机构发生偏移时,为了使无线电能传输系统仍能具有一定的恒流输出能力,提出一种基于双层正交线圈的抗偏移恒流无线电能传输系统。首先,将LCC-LCC 和LC-LC补偿网络进行输入串联和输出串联,组成双边LCC-LC串联混合补偿网络,并研究其传输特性。其次,设计了一种与满足混合补偿网络要求的双层正交DD(double-layer quadrature DD, DQDD)磁耦合机构,该机构在x、y方向发生偏移时,能实现线圈间的解耦。接着,提出一种系统参数配置方法,通过参数配置可以在磁耦合机构发生一定的偏移时,实现输出电流在开环状态下保持稳定。最后,通过搭建实验平台,验证了以上理论分析的正确性和可行性。  相似文献   

10.
负载与互感参数的识别问题是提升磁耦合无线电能传输(WPT)系统性能的关键问题,基于遗传算法提出一种SS型磁耦合WPT系统的负载与互感识别方法,在考虑系统高次谐波影响的条件下建立系统稳态电路模型,进而得到系统电路参数及状态变量之间关系的数学描述,在此基础上引入遗传算法,将系统的参数识别问题转化为寻优问题,从而给出系统负载以及互感参数的识别方法。该识别方法无需增加额外电路以及相关控制,因此降低了电路复杂度并且减小了系统体积。仿真及实验结果均验证了该方法的可行性及有效性。  相似文献   

11.
针对谐振式无线电能传输(WPT)系统在传输距离和负载变化时引起输出电压不稳定的问题,提出一种“88Q”线圈耦合装置,结合LCC/S与S/LCC型负载无关恒压谐振拓扑可实现平面线圈的三维抗偏移恒压输出。给出了“88Q”线圈的空间位置和特征参数,分析线圈激发磁场的分布特性、线圈水平偏移和改变传输距离情况下线圈互感变化趋势。最后,搭建系统实验平台。实验结果表明,系统负载变化或耦合装置发生偏移时,均可实现恒压输出。  相似文献   

12.
针对无线电能传输(WPT)系统中线圈偏移导致功率及效率波动问题,提出基于双边LCC(DS-LCC)拓扑WPT系统的改进模型。首先,对该模型进行传输特性分析,推导出不同横向偏移条件下线圈互感与传输特性间对应的函数式。其次,引入归一化方法并确定偏移后线圈匝数与耦合强度及线圈内阻的线性关系。在上述基础上通过对系统进行参数优化设计,实现特定横向偏移范围内系统输出功率和传输效率抗偏移性的提升。最后,搭建一台100 W的实验样机对理论分析进行验证。结果显示在0~20 cm的横向偏移范围内系统的输出功率始终高于80 W,传输效率始终高于70%。  相似文献   

13.
针对电动汽车进行静态无线充电时,发收机构相对偏移偏转会导致耦合系数和传输能效性急剧下降的问题,该文提出一种基于双极性耦合磁场调控的高抗偏移偏转无线电能传输(WPT)系统,该系统发射机构采用双层正交DD(DQDD)线圈,接收机构采用交叠式DD(OLDD)线圈。首先,给出空间位置和导磁机构特征参数与耦合系数之间的作用规律,并分析了发射机构激发磁场的分布特性;其次,构建基于双路逆变器-单路整流器的LCC-S补偿网络拓扑,并推导具有发射激励电流恒定特性以及系统输出电压不受负载影响的谐振参数配置条件;然后,给出一种将最大耦合系数作为期望目标的磁场调控策略;最后,通过实验样机验证了所构建耦合机构的抗偏移偏转性能。实验结果表明:在水平面±70%的偏移范围内,输出功率维持在1.8 kW左右,系统效率不低于88%。  相似文献   

14.
感应电能传输(inductive power transfer,IPT)系统的耦合机构偏移造成耦合线圈互感变化,导致输出电压偏离额定值,影响系统的可用性。为此,提出一种基于串联补偿拓扑的电路参数优化方法,来提高系统在负荷变化和耦合机构偏移情况下电压增益的平稳性。最后,搭建了实验原型机来验证该方法的有效性,结果表明:系统参数优化后,当耦合线圈偏移时互感由47.5?H变化至66.6?H,交流侧负载由15?变化至25??时,电压增益波动范围为0.52~0.64,对应波动比例为10.3%,比理论波动值高0.3%。系统效率始终高于94.2%,且最高值达95.79%。  相似文献   

15.
耦合机构是实现无线电能传输(WPT)系统高效可靠运行的核心部件,其高抗偏移性能是推动WPT技术应用与发展亟待解决的关键问题。传统耦合机构采用单一绕制线圈来适应不同的场景需求,存在抗偏移性能差、优化过程繁琐及不具普适性等特点。为此,该文结合紧密绕制线圈和松散绕制线圈各自磁感应强度的分布特点,提出一种组合串绕六边形线圈耦合机构的设计思路。在此基础上,运用电磁理论建立了所提耦合机构的互感和自感模型。以耦合机构的耦合系数为优化目标,以线圈自感和内外径、匝数、匝间距为其约束条件,运用遗传算法实现了线圈参数的自适应寻优。最后,搭建100W的实验样机验证了所提耦合机构及其参数优化方法的有效性。结果表明,耦合机构优化后其耦合系数和抗偏移性能都得以改善,提升了WPT系统的传输效率。  相似文献   

16.
针对多耦合无线电能传输(WPT)系统存在的高传导损耗现象,提出了一种基于扰动观测法的多线圈耦合WPT系统最大效率跟踪控制策略.此处首先建立了多耦合WPT系统等效电路模型,在系统谐振的情况下,分析了系统整体传输效率与源端电压有效值之比的关系;再根据系统效率模型,以系统效率最优为目标,通过比例积分(PI)闭环实现副端恒功率控制,采用扰动观测法配合移相控制实现源端等效阻抗匹配,最后搭建了基于碳化硅器件的WPT样机模型,实验证明所提方法在不需要源、副端通信的情况下,可以实现多耦合W盯系统的最大效率跟踪控制.  相似文献   

17.
无线电能传输(WPT)系统的互感和负载在实际工况中会发生变化,进而影响系统传输效率。为了在变互感和变负载工况条件下提高系统效率,提出了一种基于输出端级联Buck-Boost变换器的最大效率跟踪控制方法。首先,建立WPT系统等效电路模型,得到互感估计表达式,并推导出系统效率与互感和负载电阻的关系。然后,在输出端级联Buck-Boost变换器拓扑的基础上,研究将系统等效电阻变换为最佳电阻的控制方法,以提高系统效率。最后,搭建实验平台进行验证。实验结果表明,在互感由19μH变化至45μH(耦合系数为0.1~0.25),以及输出电压由16 V变化至48 V的工况条件下,提出的方法能够使系统工作在最大效率点,相比于未采用该方法时,系统效率实现了最大4.79%的提升。  相似文献   

18.
针对无线电能传输系统在不同耦合情况下对输出功率和传输效率的不同需求问题,提出基于WPT系统的最大功率和最大效率的切换控制策略。建立两线圈S-S型WPT系统的等效电路模型,推导系统输出功率和传输效率的数学表达式,得到该系统输出功率和传输效率均与互感和负载相关。利用MATLAB仿真软件对互感和负载发生变化时的传输特性进行分析,确定最大功率和最大效率分别对应的最佳负载值。在此基础上,引入Buck-Boost阻抗匹配网络,实现WPT系统最大功率或最大效率输出。最终在MATLAB/Simulink上搭建无线电能传输系统实验平台,对最大功率与最大效率切换状态进行仿真分析,验证所提最大功率与最大效率切换控制策略的可行性。实验结果表明,相比于系统运行在单一工作状态下,该控制策略可以根据当前系统的实际耦合情况,动态调整工作状态,满足系统对不同性能指标的需求。  相似文献   

19.
为了提高无线电能传输(WPT)系统的传输效率,通常在原、副边添加谐振补偿拓扑.目前研究的谐振补偿 拓扑包括SS型、双LCL型和双LCC型.对双LCC型补偿拓扑进行分析,并通过MATLAB 软件对其进行仿真,分别研 究不同负载、互感和角频率下系统的输入功率、输出功率、传输效率.研究结果表明该补偿拓扑的传输特性良好.  相似文献   

20.
无线电能传输(WPT)技术克服了传统有线输电过程对输电场地条件、维护便利性以及安全性的严苛要求,具有广泛的应用场景。在WPT技术中,原副边线圈间的抗偏移特性直接影响着系统电能传输的质量、效率及可靠性。通过对松耦合变压器进行优化,设计相对应的补偿网络以增强系统的抗偏移特性及输出稳定性。所设计的D.D.D.型松耦合变压器具有较强的抗偏移能力,并且具有良好的磁屏蔽特性。在传统变压器等效模型基础上,考虑漏磁通的影响,提出了对称型并串联/串并联补偿拓扑结构。通过调频控制,维持系统输入阻抗角为零,实现系统高效稳定的输出。最后,为了验证理论分析,搭建了基于D.D.D.型松耦合变压器的250 W实验平台,系统效率达到了88%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号